Chapter 3. Renewal Processes

Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Outline

- Distribution and Limiting Behavior of $\tilde{n}(t)$
 - Pmf of $\tilde{n}(t) : P(\tilde{n}(t) = k) = ?$
 - Limiting time average : $\lim_{t \to \infty} \frac{\tilde{n}(t)}{t} = ?$ (Law of Large Numbers)
 - Limiting PDF of $\tilde{n}(t)$ (Central Limit Theorem)
- Renewal Function $E[\tilde{n}(t)]$, and its Asymptotic (Limiting) behavior
 - Renewal Equation
 - Wald's Theorem and Stopping time
 - Elementary Renewal Theorem
 - Blackwell's Theorem

Outline

- Key Renewal Theorem and Applications
 - Definition of Regenerative Process
 - Renewal Theory
 - Key Renewal Theorem
 - Application 1: Residual Life, Age, and Total Life
 - Application 2: Alternating Renewal Process/Theory
 - Application 3: Mean Residual Life
- Renewal Reward Processes and Applications
 - Renewal Reward Process/Theory
 - Application 1: Alternating Renewal Process/Theory
 - Application 2: Time Average of Residual Life and Age
- More Notes on Regenerative Processes

Distribution and Limiting Behavior of $\tilde{n}(t)$

$$\begin{split} \{\tilde{x}_n, n = 1, 2, \ldots\} &\sim F_{\tilde{x}}; \text{ mean } \bar{X} \ (0 < \bar{X} < \infty) \\ N &= \{\tilde{n}(t), t \ge 0\} \text{ is called a renewal (counting) process} \\ \tilde{n}(t) &= \sup\{n : \tilde{S}_n \le t\} \quad (\therefore \text{ There are always finite renewals} \\ &= \max\{n : \tilde{S}_n \le t\} \quad \text{in a finite time } (i.e., \tilde{n}(t) < \infty)) \end{split}$$

Prof. Shun-Ren Yang, CS, NTHU 3

Distribution and Limiting Behavior of $\tilde{n}(t)$

$\tilde{n}(t)$

- 1. pmf of $\tilde{n}(t) \rightarrow \text{closed-form}$
- 2. Limiting time average [Law of Large Numbers]:

$$\frac{\tilde{n}(t)}{t} \stackrel{w.p.1}{\to} \frac{1}{\bar{X}} , \ t \to \infty$$

3. Limiting time and ensemble average [Elementary Renewal Theorem]:

$$\frac{E[\tilde{n}(t)]}{t} \stackrel{w.p.1}{\to} \frac{1}{\bar{X}} , \ t \to \infty$$

Items 2 and $3 \rightarrow$ Ergodic Theory

Distribution and Limiting Behavior of $\tilde{n}(t)$

4. Limiting ensemble average (focusing on arrivals in the vicinity of t) [Blackwell's Theorem]:

$$\frac{E[\tilde{n}(t+\delta) - \tilde{n}(t)]}{\delta} \stackrel{w.p.1}{\to} \frac{1}{\bar{X}} , \ t \to \infty$$

5. Limiting PDF of $\tilde{n}(t)$ [Central Limit Theorem]:

$$\lim_{t \to \infty} P\left[\frac{\tilde{n}(t) - t/\bar{X}}{\sigma\sqrt{t}(\bar{X})^{-3/2}} < y\right] = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \sim Gaussian(\frac{t}{\bar{X}}, \sigma\sqrt{t}\cdot\bar{X}^{-\frac{3}{2}})$$

pmf of $\tilde{n}(t)$

$$P[\tilde{n}(t) = n] = P[\tilde{n}(t) \ge n] - P[\tilde{n}(t) \ge n+1]$$

= $P[\tilde{S}_n \le t] - P[\tilde{S}_{n+1} \le t]$
 $\therefore \tilde{x}_i \sim F,$
 $\therefore \sum \tilde{x}_i \sim F(t) \otimes F(t) \dots \otimes F(t) \equiv F_n(t)$
= $F_n(t) - F_{n+1}(t)$ n-fold convolution of $F(t)$

$$\lim_{t \to \infty} \tilde{n}(t) = ?$$

$$\therefore P\left[\lim_{t \to \infty} \tilde{n}(t) < \infty\right] = P\left[\tilde{n}(\infty) < \infty\right] = P\left[\tilde{x}_n = \infty \text{ for some } n\right]$$

$$= P\left[\bigcup_{n=1}^{\infty} (\tilde{x}_n = \infty)\right] = \sum_{n=1}^{\infty} P\left[\tilde{x}_n = \infty\right] = 0$$

$$\therefore \lim_{t \to \infty} \tilde{n}(t) = \tilde{n}(\infty) = \infty \quad w.p.1$$

Question: What is the rate at which $\tilde{n}(t)$ goes to ∞ ?

Strong Law for Renewal Processes

Theorem. For a renewal process $N = \{\tilde{n}(t), t \ge 0\}$ with mean interrenewal interval \bar{X} , then

$$\lim_{t \to \infty} \frac{\tilde{n}(t)}{t} = \frac{1}{\bar{X}}, \ w.p.1$$

Proof.

Central Limit Theorem for $\tilde{n}(t)$

Theorem. Assume that the inter-renewal intervals for a renewal process $N = \{\tilde{n}(t), t \ge 0\}$ have finite mean and variance \bar{X} , σ^2 . Then,

$$\lim_{t \to \infty} P\left[\frac{\tilde{n}(t) - t/\bar{X}}{\sigma\sqrt{\frac{t}{\bar{X}^3}}} < y\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{x^2}{2}} dx$$

Proof. (idea: $\tilde{n}(t) \to \tilde{S}_{\tilde{n}(t)} \to CLT$)

Let $m(t) = E[\tilde{n}(t)]$, which is called "renewal function".

1. Relationship between m(t) and F_n

$$m(t) = \sum_{n=1}^{\infty} F_n(t)$$
, where F_n is the *n*-fold convolution of F

2. Relationship between m(t) and F[Renewal Equation]

$$m(t) = F(t) + \int_0^t m(t-x)dF(x)$$

3. Relationship between m(t) and $L_{\tilde{x}}(r)$ (Laplace Transform of \tilde{x})

$$L_m(r) = \frac{L_{\tilde{x}}(r)}{r[1 - L_{\tilde{x}}(r)]}$$

Prof. Shun-Ren Yang, CS, NTHU 10

 \rightarrow [Wald's Equation]

- 4. Asymptotic behavior of m(t) $(t \to \infty$, Limiting)
 - \rightarrow [Elementary Renewal Theorem]
 - \rightarrow [Blackwell's Theorem]

1. $m(t) = E[\tilde{n}(t)] \stackrel{?}{\longleftrightarrow} F_n$ (i.e., PDF of \tilde{S}_n) Let $\tilde{n}(t) = \sum_{n=1}^{\infty} I_n$, where $I_n = \begin{cases} 1, & n_{th} \text{ renewal occurs in } [0, t]; \\ 0, & \text{Otherwise;} \end{cases}$ $m(t) = E[\tilde{n}(t)] = E\left[\sum_{n=1}^{\infty} I_n\right]$ $= \sum_{n=1}^{\infty} E[I_n]$ n=1 ∞ $= \sum P[$ n=1 ∞ $= \sum P[$ n=1

Prof. Shun-Ren Yang, CS, NTHU 12

$$\therefore m(t) = \sum_{n=1}^{\infty} F_n(t)$$

or $m(t) = \sum_{n=1}^{\infty} P[\tilde{n}(t) \ge n] = \sum_{n=1}^{\infty} P[\tilde{S}_n \le t] = \sum_{n=1}^{\infty} F_n(t)$

As $t \to \infty$, $n \to \infty$, finding F_n is far too complicated

 \Rightarrow find another way of solving m(t) in terms of $F_{\tilde{x}}(t)$

2. $m(t) \stackrel{?}{\longleftrightarrow} F_{\tilde{x}}(t)$ (i.e., PDF of \tilde{x})

$$\begin{array}{ll} & \tilde{S}_n = \tilde{S}_{n-1} + \tilde{x}_n, \text{ for all } n \ge 1, \text{ and } \tilde{S}_{n-1} \text{ and } \tilde{x}_n \text{ are independent,} \\ & \ddots \quad P[\tilde{S}_n \le t] = \int_0^t P[\tilde{S}_{n-1} \le t - x] dF_{\tilde{x}}(x), \text{ for } n \ge 2 \\ & \text{ for } n = 1, \tilde{x}_1 = \tilde{S}_1, P[\tilde{S}_1 \le t] = F_{\tilde{x}}(x) \\ & \ddots \quad m(t) = \sum_{n=1}^\infty P[\tilde{S}_n \le t] = F_{\tilde{x}}(t) + \int_0^t \sum_{n=2}^\infty P[\tilde{S}_{n-1} \le t - x] dF_{\tilde{x}}(x) \\ & m(t) = F_{\tilde{x}}(t) + \int_0^t m(t - x) \cdot dF_{\tilde{x}}(x) \quad \Rightarrow \text{Renewal Equation} \end{array}$$

3.
$$L_m(r) \stackrel{?}{\longleftrightarrow} L_{\tilde{x}}(r)$$
 (Laplace Transform of \tilde{x})
(Laplace Transform of $m(t) = L_m(r)$)
Answer:

$$L_m(r) = \frac{L_{\tilde{x}}(r)}{r[1 - L_{\tilde{x}}(r)]}$$

<<u>Homework</u>> Prove it.

4. Asymptotic behavior of m(t):

$$\lim_{t \to \infty} \frac{m(t)}{t} = \lim_{t \to \infty} \frac{E[\tilde{n}(t)]}{t} = ?$$

Stopping Time (Rule)

Definition. \tilde{N} , an integer-valued r.v., is said to be a "stopping time" for a set of independent random variables $\tilde{x}_1, \tilde{x}_2, \ldots$ if event $\{\tilde{N} = n\}$ is independent of $\tilde{x}_{n+1}, \tilde{x}_{n+2}, \ldots$

Example 1.

- Let $\tilde{x}_1, \tilde{x}_2, \ldots$ be independent random variables,
- $P[\tilde{x}_n = 0] = P[\tilde{x}_n = 1] = 1/2, \quad n = 1, 2, \dots$
- if $\tilde{N} = \min\{n : \tilde{x}_1 + \ldots + \tilde{x}_n = 10\}$

 \rightarrow Is \tilde{N} a stopping time for $\tilde{x}_1, \tilde{x}_2, \ldots$?

Answer:

Stopping Time (Rule)

Example 2.

- $\tilde{n}(t), X = \{\tilde{x}_n, n = 1, 2, 3, \ldots\},\$
- $S = \{ \tilde{S}_n, n = 0, 1, 2, 3, \ldots \},$
- $\tilde{S}_n = \tilde{S}_{n-1} + \tilde{x}_n$

$$\rightarrow$$
 Is $\tilde{n}(t)$ the stopping time of $X = \{\tilde{x}_n, n = 1, 2, \ldots\}$?

Answer:

Stopping Time (Rule)

Example 3. Is $\tilde{n}(t) + 1$ the stopping time for $\{\tilde{x}_n\}$?

Answer:

Stopping Time - from \tilde{I}_n

Definition. \tilde{N} , an integer-valued r.v. is said to be a stopping time for a set of independent random variables $\{\tilde{x}_n, n \ge 1\}$, if for each n > 1, \tilde{I}_n , conditional on $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{n-1}$, is independent of $\{\tilde{x}_k, k \ge n\}$

Define.
$$\tilde{I}_n$$
 - a decision rule for stopping time $\tilde{N}, n \ge 1$
 $\tilde{I}_n = \begin{cases} 1, & \text{if the } n_{th} \text{ observation is to be made;} \\ 0, & \text{Otherwise} \end{cases}$

1. \tilde{N} is the stopping time \tilde{I}_n depends on $\tilde{x}_1, \dots, \tilde{x}_{n-1}$ but not $\tilde{x}_n, \tilde{x}_{n+1}, \dots$ 2. \tilde{I}_n is also an indicator function of event $\{\tilde{N} \ge n\},$ i.e., $\tilde{I}_n = \begin{cases} 1, & \text{if } \tilde{N} \ge n; \\ 0, & \text{Otherwise;} \end{cases}$

Stopping Time - from \tilde{I}_n

Because

- If $\tilde{N} \ge n$, then n_{th} observation must be made;
- Since $\tilde{N} \ge n$ implies $\tilde{N} \ge n 1$ and happily, $\tilde{I}_n = 1$ implies $\tilde{I}_{n-1} = 1$

 $\therefore \text{ Stopping time} \\ \left\{ \begin{array}{l} \tilde{N} = n \\ \tilde{N} = n \\ 0 \\ I_n \text{ is} \end{array} \right.$

Theorem. If $\{\tilde{x}_n, n \ge 1\}$ are i.i.d. random variables with finite mean $E[\tilde{x}]$, and if \tilde{N} is the stopping time for $\{\tilde{x}_n, n \ge 1\}$, such that $E[\tilde{N}] < \infty$. Then,

$$E\left[\sum_{n=1}^{\tilde{N}} \tilde{x}_n\right] = E[\tilde{N}] \cdot E[\tilde{x}]$$

Proof.

For Wald's Theorem to be applied, other than $\{\tilde{x}_i, i \geq 1\}$

- 1. \tilde{N} must be a stopping time; and
- 2. $E[\tilde{N}] < \infty$

Example. (Example 3.2.3 – Simple Random Walk, [Kao])

{
$$\tilde{x}_i$$
} i.i.d. with: $P(\tilde{x} = 1) = p$
 $P(\tilde{x} = -1) = 1 - p = q$
 $\tilde{S}_n = \sum_{k=1}^{n} \tilde{x}_k$

Prof. Shun-Ren Yang, CS, NTHU 23

• Let
$$\tilde{N} = \min\{n | \tilde{S}_n = 1\}$$

• Let
$$\tilde{M} = \min\{n | \tilde{S}_n = 1\} - 1$$

Corollary

Before proving
$$\lim_{t \to \infty} \frac{m(t)}{t} \to \frac{1}{\overline{X}}$$
,

Corollary. If $\bar{X} < \infty$, then

$$E[\tilde{S}_{\tilde{n}(t)+1}] = \bar{X}[m(t)+1]$$

Proof.

The Elementary Renewal Theorem

Theorem.

$$\frac{m(t)}{t} \to \frac{1}{\overline{X}} \quad \text{as } t \to \infty$$

Proof.

- Ensemble Average.
 - to determine the expected renewal rate in the limit of large t, without averaging from $0 \rightarrow t$ (time average)
- Question.
 - are there some values of t at which renewals are more likely than others for large t ?

- An example. If each inter-renewal interval $\{\tilde{x}_i, i = 1, 2, ...\}$ takes on integer number of time units, e.g., 0, 4, 8, 12, ..., then expected rate of renewals is zero at other times. Such random variable is said to be "*lattice*".

- Definitions.
 - * A nonnegative random variable \tilde{x} is said to be *lattice* if there exists $d \ge 0$ such that

$$\sum_{n=0}^{\infty} P[\tilde{x} = nd] = 1$$

- * That is, \tilde{x} is lattice if it only takes on integral multiples of some nonnegative number d. The largest d having this property is said to be the *period* of \tilde{x} . If \tilde{x} is lattice and F is the distribution function of \tilde{x} , then we say that F is *lattice*.
- Answer.
 - Inter-renewal interval random variables are not lattice \Rightarrow uniform expected rate of renewals in the limit of large t. (Blackwell's Theorem)

Blackwell's Theorem

Theorem. If, for $\{\tilde{x}_i, i \geq 1\}$, which are not lattice, then, for any $\delta > 0$,

$$\lim_{t \to \infty} [m(t+\delta) - m(t)] = \frac{\delta}{\bar{X}}$$

If the inter-renewal distribution is lattice with period d, then for any integer $n \ge 1$,

$$\lim_{n \to \infty} m(nd) = \frac{d}{\bar{X}} \qquad (\text{or } \lim_{t \to \infty} [m(t+nd) - m(t)] = \frac{nd}{\bar{X}})$$

Proof. (omitted)

For non-lattice inter-renewal process $\{\tilde{x}_i, i \geq 1\}$,

1. $\tilde{x}_i > 0 \Rightarrow$ No multiple renewals (single arrival)

2. From Blackwell's Theorem, the probability of a renewal in a small interval $(t, t + \delta]$ tends to $\delta/\bar{X} + o(\delta)$ as $t \to \infty$,

 \therefore Limiting distribution of renewals in $(t, t + \delta]$ satisfies

$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) = 1] = \frac{\delta}{\bar{X}} + o(\delta)$$
$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) = 0] = 1 - \frac{\delta}{\bar{X}} + o(\delta)$$
$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) \ge 2] = o(\delta)$$

\Rightarrow			
	single arrival	Stationary	Independent
		Increment	Increment
Poisson			
Renewal			
Process			
(Non-lattice)			

Regenerative Process

•
$$Z = {\tilde{Z}_t, t \ge 0}; \quad S = {\tilde{S}_n, n \ge 0}$$
 is a renewal process;

• Z is said to be a regenerative process if

_

$$E[f(\tilde{Z}_{\tilde{S}_m+t_1}, \tilde{Z}_{\tilde{S}_m+t_2}, \dots, \tilde{Z}_{\tilde{S}_m+t_n}) | \tilde{Z}_u; u \le \tilde{S}_m]$$

That is,

Let
$$\tilde{W}_t = f(\tilde{Z}_{t+t_1}, \tilde{Z}_{t+t_2}, \dots, \tilde{Z}_{t+t_n}).$$

Let $\hat{\tilde{Z}}_u = \tilde{Z}_{T+u}$ ($\hat{\tilde{Z}}$ is the future process obtained from \tilde{Z} by taking $T = \tilde{S}_m$ as the time origin.)

$$\hat{W}_T = f(\tilde{Z}_{T+t_1}, \dots, \tilde{Z}_{T+t_n})$$
$$= f(\tilde{Z}_{t_1}, \dots, \tilde{Z}_{t_n}) = \hat{\tilde{W}}_0$$

Then, the regenerative property says:

- 1. $E[\hat{\tilde{W}}_0|Z_u; u < T] = E[\hat{\tilde{W}}_0] \rightarrow$ Future process \hat{Z} is independent of the past history before T.
- 2. $E[\hat{\tilde{W}}_0] = E[\tilde{W}_0] \to \text{Probability law of } \hat{Z} \text{ is the same as that of } Z$

Regenerative Process

Example 1.

• Let $Z = {\tilde{Z}_t, t \ge 0}$, be the queue size at time t for a single sever queueing system, subject to Poisson process of arrivals and General i.i.d. service time distribution (M/G/1).
- $\underline{\text{Time origin}} = \text{the instant of departure which left behind 0}$ customers;
- Then, Z is the regenerative process with regeneration time process $S = \{\tilde{S}_n, n \ge 0\}$ (shown as "O").
- That is, every time a departure occurs leaving behind an empty system, the future of Z after such a time has exactly the same probability law as the process Z starting at time 0.

Example 2.

- $\underline{\text{Time origin}} = \text{the instant of departure leaving behind exactly one customers;}$
- Then, Z is the regenerative process with regeneration time process $u = {\tilde{u}_n, n \ge 0}$ (shown as "X").

- The main tool for studying regenerative processes in the absence of future properties
- To study $\tilde{Z}_t = i$ (e.g. number of customers in the system at time t = i) $-g(t) = P[\tilde{Z}_t = i] = ?$ (pdf) $-\lim_{t \to \infty} g(t) = ?$ (limiting pdf)
- Conditioning the event $\tilde{Z}_t = i$ on the time \tilde{S}_1 of the first generation,

 \therefore Z is a regenerative process,

 $\hat{Z} \stackrel{\Delta}{=} Z_{\tilde{S}_1+t}$ has the same probability law as Z

Prof. Shun-Ren Yang, CS, NTHU 37

- Case 1: if
$$\tilde{S}_1 = s \leq t \Rightarrow$$

- Case 2: if
$$\tilde{S}_1 = s > t \Rightarrow ?$$

- Solving $g(t) \longrightarrow$ solving h(t) $(f_{\tilde{S}}(s)$ is known)
- Solving $\lim_{t\to\infty} g(t) =$? (Key Renewal Theorem !!)

Example. Renewal function $m(t) = E[\tilde{n}(t)] = ?$

- **Question.** How to remove the recursive relationship in the renewal-type equation?
- Solution. Take Laplace transform and invert it.

Example 1.

- $X = {\tilde{x}_i}$ i.i.d. inter-arrival time, mean \bar{X} ,
- Recall: $E[\tilde{S}_{\tilde{N}(t)+1}] = \bar{X}[m(t)+1]$
- Prove it using Renewal-Type Equation and its solution.

Answer.

Example 2. Renewal function m(t)

$$m(t) = F(t) + \int_0^t m(t-x) f_{\tilde{x}}(x) dx$$
$$\downarrow$$
$$m(t) = F(t) + \int_0^t F(t-x) dm(x)$$

<**Question** $> \lim_{t \to \infty} g(t) =?$

Theorem. If $F_{\tilde{x}}$ is non-lattice, and if h(t) is directly Riemann integrable (i.e., $h(t) \ge 0$, non-increasing, $\int_0^\infty h(t)dt < \infty$), (integrable with respect to time exists), then,

$$\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \int_0^t h(t - x) dm(x)$$
$$= \frac{1}{\bar{X}} \int_0^\infty h(t) dt$$
where $m(x) = \sum_{n=1}^\infty F_n(x)$ $\bar{X} = \int_0^\infty \bar{F}(x) dx$

Proof. (omitted)

Prof. Shun-Ren Yang, CS, NTHU 43

Note. Riemann Integral and Directly Riemann Integrable

1. Riemann Integral (RI)

a partition of [a b] (not necessary "even")

2. Directly Riemann Integrable (DRI)

Prof. Shun-Ren Yang, CS, NTHU 44

Definition. f(t), defined on $[0, \infty]$, is said to be D.R. Integrable, (defined as $f \in D$), for every b > 0, $\overline{m}_n(b)$ and $\underline{m}_n(b)$ be the sup and inf of f(t), i.e.,

$$\overline{m}_n(b) = \sup\{f(t) : nb \le t < (n+1)b\}$$
$$\underline{m}_n(b) = \inf\{f(t) : nb \le t < (n+1)b\}$$

if

$$\sum_{n=0}^{\infty} \overline{m}_n(b) \text{ and } \sum_{n=0}^{\infty} \underline{m}_n(b) \text{ are finite, and}$$
$$\lim_{b \to 0} b \cdot \sum_{n=0}^{\infty} \overline{m}_n(b) = \lim_{b \to 0} b \cdot \sum_{n=0}^{\infty} \underline{m}_n(b) = \int_0^{\infty} f(t) dt < \infty$$

- Sufficient conditions for an f(t) to be D.R. Integrable
 - 1. $f(t) \ge 0 \quad \forall t$
 - 2. f(t) non-increasing 3. $\int_0^\infty f(t)dt < \infty$

• For time t,

- $\tilde{Y}(t) = \tilde{S}_{\tilde{N}(t)+1} - t$ (Residual Life, Excess life, Forward recurrence time)

 $- \tilde{A}(t) = t - \tilde{S}_{\tilde{N}(t)} \text{ (Age, Current life, Backward recurrence time)}$ $- \tilde{T}(t) = \tilde{Y}(t) + \tilde{A}(t) = \tilde{x}_{\tilde{N}(t)+1} \text{ (life, spread, recurrence time)}$

To find: $(\tilde{Y}(t))$

- $F_{\tilde{Y}(t)}(x) = ? (\bar{F}_{\tilde{Y}(t)}(x) = ?)$ (Renewal-Type Equation & solution)
- $\lim_{t \to \infty} F_{\tilde{Y}(t)}(x) = ?$ (Key Renewal Theorem)
- $\lim_{t \to \infty} E[\tilde{Y}(t)] = ?(F_{\tilde{Y}(t)})$

$$\lim_{t \to \infty} E[\tilde{Y}(t)] = \lim_{t \to \infty} \int_0^\infty \bar{F}_{\tilde{Y}(t)}(x) dx$$

To find: $(\tilde{A}(t))$

• $F_{\tilde{A}(t)}(x) = ? (\bar{F}_{\tilde{A}(t)}(x) = ?)$

Notice that :

- $\tilde{A}(t) > x \Leftrightarrow$
- $P(\tilde{A}(t) > x) = 0$, where

<Homework>

1. Find
$$\lim_{t \to \infty} F_{\tilde{A}(t)}(x) = ?$$

2. Find $\lim_{t \to \infty} E[\tilde{A}(t)] = ?$

To find: $\tilde{T}(t)$

- $F_{\tilde{T}(t)}(x) = ?$
- $\lim_{t \to \infty} F_{\tilde{T}(t)}(x) = ?$

<Homework.> Find $\lim_{t\to\infty} E[\tilde{T}(t)] = ?$

The Inspection Paradox

$$\tilde{T}(t) = \tilde{S}_{\tilde{N}(t)+1} - \tilde{S}_{\tilde{N}(t)} = \tilde{X}_{\tilde{N}(t)+1} \stackrel{\Delta}{=} \tilde{x}_0$$

From above, we get:
$$F_{\tilde{x}_0}(x) = \frac{1}{E[\tilde{x}]} \cdot \int_0^x y \cdot dF_{\tilde{x}}(y)$$

From definition we get: $F_{\tilde{x}}(x) = \int_0^x dF_{\tilde{x}}(y)$

From definition, we get: $F_{\tilde{x}}(x) = \int_0^{\infty} dF_{\tilde{x}}(y)$

Why $F_{\tilde{x}_0}(x) \neq F_{\tilde{x}}(x)$?

- That is, the length of the renewal interval containing t is stochastically greater than the length of an ordinary renewal interval
 - If you drop a point to a segmented time line, the segment that the point falls into should be larger than other segments
 - "Inspection paradox" [Ref. Ross, P.118-Remark]

Application 2 : Alternating Renewal Process

What is the distribution of $\tilde{S}_{\tilde{N}(t)}$, i.e., the time of the last renewal prior to (or at) time t (will be used later)?

Lemma.

$$P[\tilde{S}_{\tilde{N}(t)} \le s] = \bar{F}_{\tilde{x}_1}(t) + \int_0^s \bar{F}_{\tilde{x}_1}(t-y) dm(y), \ s \le t$$

Proof.

Application 2 : Alternating Renewal Process

<u>Note</u>: From the previous lemma, we get:

$$P[\tilde{S}_{\tilde{N}(t)} = 0] = \bar{F}_{\tilde{x}_1}(t)$$
$$dF_{\tilde{S}_{\tilde{N}(t)}}(y) = \bar{F}_{\tilde{x}_1}(t-y)dm(y)$$

 \downarrow reasoning

$$dF_{\tilde{S}_{\tilde{N}(t)}}(y) = f_{\tilde{S}_{\tilde{N}(t)}}(y)dy$$
$$=$$

Application 2 : Alternating Renewal Process

 \downarrow To prove:

Alternating Renewal Theory (Conditioning on $\tilde{S}_{\tilde{N}(t)}$)

Alternating Renewal Processes

 $\{(\tilde{Z}_k, \tilde{Y}_k), k \ge 1\}$ are i.i.d.

 \Rightarrow Alternating Renewal Processes $\left\{ \right.$

$$\begin{cases} \tilde{Z}_i \sim F_{\tilde{Z}}(t) \\ \tilde{Y}_i \sim F_{\tilde{Y}}(t) \\ \tilde{Z}_i + \tilde{Y}_i \sim F_{\tilde{X}}(t) \end{cases}$$

Theorem. If $E[\tilde{Z}_n + \tilde{Y}_n] < \infty$, and $F_{\tilde{Z}_n + \tilde{Y}_n}$ is non-arithmetic, then

$$\lim_{t \to \infty} P[\text{system is "ON" at time } t] \stackrel{\Delta}{=} \lim_{t \to \infty} P(t) = \frac{E[\tilde{Z}_n]}{E[\tilde{Z}_n] + E[\tilde{Y}_n]}$$

Prof. Shun-Ren Yang, CS, NTHU 59

Alternating Renewal Processes

Proof.

Applications of the Alternating Renewal Theory

Computation of the distributions of $\tilde{A}(t), \tilde{Y}(t)$, and $\tilde{T}(t)$, i.e.,

 $\lim_{t \to \infty} P[\tilde{A}(t) \le x] = ? (\lim_{t \to \infty} P[\tilde{Y}(t) \le x] = ?) (\lim_{t \to \infty} P[\tilde{T}(t) \le x] = ?)$

- 1. Let an on-off cycle correspond to a renewal interval.
 - The system is "on" at time t if the age at t is less or equal to x, i.e., "on" the first x units of a renewal interval.

Prof. Shun-Ren Yang, CS, NTHU 61

Applications of the Alternating Renewal Theory

2.

$$\lim_{t \to \infty} P[\tilde{Y}(t) \le x] = \lim_{t \to \infty} P[\text{"OFF" at } t]$$

Applications of the Alternating Renewal Theory

Application 3 : Compute $E[\tilde{Y}(t)]$ by conditioning $\tilde{S}_{\tilde{N}(t)}$

$$E[\tilde{Y}(t)] = E[\tilde{Y}(t)|\tilde{S}_{\tilde{N}(t)} = 0] \cdot \bar{F}(t) + \int_{0}^{t} E[\tilde{Y}(t)|\tilde{S}_{\tilde{N}(t)} = y]\bar{F}(t-y)dm(y)$$

$$=$$

Renewal Reward Process and Applications

- $\tilde{R}_n \stackrel{\Delta}{=}$ the reward earned at the time of the n_{th} renewal;
- $\tilde{R}_n \ge 0$, for all n;
- $\{\tilde{R}_n, n \ge 1\}$ are i.i.d., with mean $E[\tilde{R}]$;
- \tilde{R}_n may depend on \tilde{x}_n ;
- $(\tilde{R}_n, \tilde{x}_n), n \ge 1$ i.i.d. random variables;

• Let
$$\tilde{R}(t) = \sum_{n=1}^{\tilde{N}(t)} \tilde{R}_n \stackrel{\Delta}{=}$$
 the total reward earned by t

Renewal Reward Process and Applications

Theorem. If $E[\tilde{R}] < \infty$, $E[\tilde{x}] < \infty$, then

$$\frac{\tilde{R}(t)}{t} \rightarrow \frac{E[\tilde{R}]}{E[\tilde{x}]}$$
 w.p.1 as $t \rightarrow \infty$

i.e., long-run average reward =

2.

1.

$$\frac{E[\tilde{R}(t)]}{t} \to \frac{E[\tilde{R}]}{E[\tilde{x}]} \text{ as } t \to \infty$$

i.e., expected long-run average reward =

Renewal Reward Process and Applications

Note: The Renewal Reward Theorem says that:

$$\frac{\tilde{R}(t)}{t} \to \frac{E[\tilde{R}]}{E[\tilde{x}]} \text{ w.p.1 as } t \to \infty, \text{ i.e., } \lim_{t \to \infty} \underbrace{\frac{\sum_{n=1}^{N(t)} \tilde{R}_n}{t}}_{\text{Time Average}} = \frac{E[\tilde{R}]}{E[\tilde{x}]}$$

 $\tilde{\mathbf{N}}(\mathbf{r})$

. The long-run average reward

_

_

_

Application #1: (Alternating Renewal Processes)

Application # 2 : (Time Avg. of Age and Residual life)

To find
$$\lim_{t \to \infty} \frac{\int_0^t \tilde{A}(s) ds}{t} = ?$$

Application # 2 : (Time Avg. of Age and Residual life)

Application # 3 : The Little's Formula – Part I

- A G/G/1 queueing server:
 - Let X_1, X_2, \ldots denote the interarrival times between customers; and let Y_1, Y_2, \ldots denote the service times of successive customers. We shall assume that

$$E[Y_i] < E[X_i] < \infty$$

• Suppose that the first customer arrives at time 0 and let n(t) denote the number of customers in the system at time t. Define

$$L = \lim_{t \to \infty} \int_0^t n(s) ds / t$$

• Imagine that a reward is being earned at time s at rate n(s). If we let a cycle correspond to the start of a busy period, then the process restarts itself each cycle.
Application # 3 : The Little's Formula – Part I

• As L represents the long-run average reward, it follows from the Renewal Reward Theorem that

$$L =$$

=

Application # 3 : The Little's Formula – Part II

• Let W_i denote the amount of time the *i*th customer spends in the system and define

$$W = \lim_{n \to \infty} \frac{W_1 + \dots + W_n}{n}$$

• Let N denote the number of customers served in a cycle, then W is the average reward per unit time of a renewal process in which the cycle time is N and the cycle reward is $W_1 + \cdots + W_N$, and, hence,

$$W =$$

_

Application #3 : The Little's Formula – Part III

Theorem. Let $\lambda = 1/E[X_i]$ denote the arrival rate. Then

 $L=\lambda W$

Proof.

Application #3 : The Little's Formula – Part III

Remarks

• The Little's Formula states that

• By replacing "the system" by "the queue" the same proof shows that

• By replacing "the system" by "service" we have that

Regenerative Processes

Stochastic process $Z = \{\tilde{Z}(t), t \ge 0\}$ with state space $S = \{0, 1, 2, ...\}$ is called a *regenerative process* if the regenerative property holds.

Theorem. If $E[\tilde{x}] < \infty$

$$\lim_{t \to \infty} P[\tilde{Z}(t) = j] = \frac{E[\text{amount of time in state } j \text{ in a cycle}]}{E[\text{cycle length}]}$$
$$= \frac{\int_0^\infty P[\tilde{Z}(t) = j, \tilde{x}_1 > t]dt}{E[\tilde{x}]}$$

Prof. Shun-Ren Yang, CS, NTHU 76

Regenerative Processes

Proof.

Regenerative Processes

Theorem. For a regenerative process with $E[\tilde{x}_1] < \infty$, with probability 1, $\lim_{t \to \infty} \frac{[\text{time in } j \text{ during } (0, t)]}{t} = \frac{E[\text{time in state } j \text{ during a cycle}]}{E[\text{time of a cycle}]}$

Proof.

Homework. to be announced on the web

- We often consider a counting process for which the first interarrival time has a different distribution from the remaining ones.
- For instance, we might start observing a renewal process at some time t > 0. If a renewal does not occur at t, then the distribution of the time we must wait until the first observed renewal will not be the same as the remaining interarrival distributions.
- Formally, let $\{X_n, n = 1, 2, ...\}$ be a sequence of independent nonnegative random variables with X_1 having distribution G, and X_n having distribution F, n > 1. Let $S_0 = 0$, $S_n = \sum_{i=1}^{n} X_i$, $n \ge 1$, and define

$$N_D(t) = \sup\{n : S_n \le t\}.$$

• **Definition.** The stochastic process $\{N_D(t), t \ge 0\}$ is called a *general* or a *delayed* renewal process.

• When G = F, we have, of course, an ordinary renewal process. As in the ordinary case, we have

_

$$P\{N_D(t) = n\} =$$

• Let $m_D(t) = E[N_D(t)]$. Then it is easy to show that

$$m_D(t) =$$

and by taking transforms, we obtain

$$\tilde{m}_D(s) =$$

By using the corresponding result for the ordinary renewal process, it is easy to prove similar limit theorems for the delayed process. Let $\mu = \int_0^\infty x dF(x).$

Proposition.

1. With probability 1,

$$\frac{N_D(t)}{t} \to \frac{1}{\mu} \qquad \text{as } t \to \infty$$

2.

$$\frac{m_D(t)}{t} \to \frac{1}{\mu}$$
 as $t \to \infty$

Prof. Shun-Ren Yang, CS, NTHU 81

3. If F is not lattice, then

$$m_D(t+a) - m_D(t) \to \frac{a}{\mu}$$
 as $t \to \infty$

4. If F and G are lattice with period d, then

$$E[\text{number of renewals at } nd] \to \frac{d}{\mu} \qquad \text{as } n \to \infty$$

5. If F is not lattice, $\mu < \infty$, and h directly Riemann integrable, then

$$\int_0^\infty h(t-x)dm_D(x) \to \int_0^\infty h(t)dt/\mu$$

• In the same way we proved the result in the case of an ordinary renewal process, it follows that the distribution of the time of the last renewal before (or at) t is given by

$$P\{S_{N(t)} \le s\} =$$

• When $\mu < \infty$, the distribution function

$$F_e(x) =$$

is called the *equilibrium distribution* of F. Its Laplace transform is given by

$$\tilde{F}_e(s) = \int_0^\infty e^{-sx} dF_e(x)$$

- The delayed renewal process with $G = F_e$ is called the *equilibrium* renewal process and is extremely important.
- For suppose that we start observing a renewal process at time t. Then the process we observe is a delayed renewal process whose initial distribution is the distribution of Y(t) (i.e., residual life). Thus, for tlarge, it follows that the observed process is the equilibrium renewal process.

Let $Y_D(t)$ denote the residual life at t for a delayed renewal process.

Theorem. For the equilibrium renewal process:

- 1. $m_D(t) = t/\mu$
- 2. $P{Y_D(t) \le x} = F_e(x)$ for all $t \ge 0$
- 3. $\{N_D(t), t \ge 0\}$ has stationary increments

Proof.