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Outline

• Distribution and Limiting Behavior of ñ(t)

– Pmf of ñ(t) : P (ñ(t) = k) =?

– Limiting time average : lim
t→∞

ñ(t)
t

=? (Law of Large Numbers)

– Limiting PDF of ñ(t) (Central Limit Theorem)

• Renewal Function E[ñ(t)], and its Asymptotic (Limiting) behavior

– Renewal Equation

– Wald’s Theorem and Stopping time

– Elementary Renewal Theorem

– Blackwell’s Theorem
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Outline

• Key Renewal Theorem and Applications
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– Renewal Theory

– Key Renewal Theorem

– Application 1: Residual Life, Age, and Total Life

– Application 2: Alternating Renewal Process/Theory

– Application 3: Mean Residual Life

• Renewal Reward Processes and Applications

– Renewal Reward Process/Theory

– Application 1: Alternating Renewal Process/Theory
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Distribution and Limiting Behavior of ñ(t)
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{x̃n, n = 1, 2, . . .} ∼ Fx̃; mean X̄ (0 < X̄ <∞)
N = {ñ(t), t ≥ 0} is called a renewal (counting) process

ñ(t) = sup{n : S̃n ≤ t} (··· There are always finite renewals

= max{n : S̃n ≤ t} in a finite time (i.e., ñ(t) <∞))
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Distribution and Limiting Behavior of ñ(t)

ñ(t)

1. pmf of ñ(t)→ closed-form

2. Limiting time average [Law of Large Numbers]:

ñ(t)
t

w.p.1→ 1
X̄

, t→∞

3. Limiting time and ensemble average
[Elementary Renewal Theorem]:

E[ñ(t)]
t

w.p.1→ 1
X̄

, t→∞

Items 2 and 3 → Ergodic Theory
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Distribution and Limiting Behavior of ñ(t)

4. Limiting ensemble average (focusing on arrivals in the vicinity of t )
[Blackwell’s Theorem]:

E[ñ(t + δ)− ñ(t)]
δ

w.p.1→ 1
X̄

, t→∞

5. Limiting PDF of ñ(t) [Central Limit Theorem]:

lim
t→∞P

[
ñ(t)− t/X̄

σ
√

t(X̄)−3/2
< y

]
=

∫ y

−∞
1√
2π

e−
x2

2 dx ∼ Gaussian(
t

X̄
, σ
√

t·X̄− 3
2 )
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pmf of ñ(t)

P [ñ(t) = n] = P [ñ(t) ≥ n]− P [ñ(t) ≥ n + 1]

= P [S̃n ≤ t]− P [S̃n+1 ≤ t]
··· x̃i ∼ F,

···
∑

x̃i ∼ F (t)⊗ F (t) . . .⊗ F (t) ≡ Fn(t)

= Fn(t)− Fn+1(t) n-fold convolution of F (t)
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Limiting Time Average

lim
t→∞ ñ(t) =?

··· P

[
lim
t→∞ ñ(t) <∞

]
= P [ñ(∞) <∞] = P [x̃n =∞ for some n]

= P

[ ∞⋃
n=1

(x̃n =∞)

]
=

∞∑
n=1

P [x̃n =∞] = 0

··· lim
t→∞ ñ(t) = ñ(∞) =∞ w.p.1

Question: What is the rate at which ñ(t) goes to ∞ ?

)(~ tn

t

?

?
)(~

lim =
∞→ t

tn
t

i.e.
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Strong Law for Renewal Processes

Theorem. For a renewal process N = {ñ(t), t ≥ 0} with mean inter-
renewal interval X̄, then

lim
t→∞

ñ(t)
t

=
1
X̄

, w.p.1

Proof.
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Central Limit Theorem for ñ(t)

Theorem. Assume that the inter-renewal intervals for a renewal process
N = {ñ(t), t ≥ 0} have finite mean and variance X̄, σ2. Then,

lim
t→∞P

⎡
⎢⎢⎣ ñ(t)− t/X̄

σ

√
t

X̄3

< y

⎤
⎥⎥⎦ =

1√
2π

∫ y

−∞
e
−x2

2 dx

Proof. (idea: ñ(t)→ S̃ñ(t) → CLT )
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Renewal Function E[ñ(t)]

Let m(t) = E[ñ(t)], which is called “renewal function”.

1. Relationship between m(t) and Fn

m(t) =
∞∑

n=1

Fn(t), where Fn is the n-fold convolution of F

2. Relationship between m(t) and F

[Renewal Equation]

m(t) = F (t) +
∫ t

0
m(t− x)dF (x)

3. Relationship between m(t) and Lx̃(r) (Laplace Transform of x̃)

Lm(r) =
Lx̃(r)

r[1− Lx̃(r)]
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Renewal Function E[ñ(t)]

→ [Wald’s Equation]

4. Asymptotic behavior of m(t) (t→∞, Limiting)
→ [Elementary Renewal Theorem]
→ [Blackwell’s Theorem]
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Renewal Function E[ñ(t)]

1. m(t) = E[ñ(t)] ?←→ Fn (i.e., PDF of S̃n)

Let ñ(t) =
∞∑

n=1

In, where In =

⎧⎨
⎩ 1, nth renewal occurs in [0, t];

0, Otherwise;

m(t) = E[ñ(t)] = E

[ ∞∑
n=1

In

]

=
∞∑

n=1

E[In]

=
∞∑

n=1

P [ ]

=
∞∑

n=1

P [ ]
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Renewal Function E[ñ(t)]

··· m(t) =
∞∑

n=1

Fn(t)

or m(t) =
∞∑

n=1

P [ñ(t) ≥ n] =
∞∑

n=1

P [S̃n ≤ t] =
∞∑

n=1

Fn(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As t→∞, n→∞, finding Fn is far too complicated

⇒ find another way of solving m(t) in terms of Fx̃(t)
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Renewal Function E[ñ(t)]

2. m(t) ?←→ Fx̃(t) (i.e., PDF of x̃)

··· S̃n = S̃n−1 + x̃n, for all n ≥ 1, and S̃n−1 and x̃n are independent,

··· P [S̃n ≤ t] =
∫ t

0
P [S̃n−1 ≤ t− x]dFx̃(x), for n ≥ 2

for n = 1, x̃1 = S̃1, P [S̃1 ≤ t] = Fx̃(x)

··· m(t) =
∞∑

n=1

P [S̃n ≤ t] = Fx̃(t) +
∫ t

0

∞∑
n=2

P [S̃n−1 ≤ t− x]dFx̃(x)

m(t) = Fx̃(t) +
∫ t

0
m(t− x) · dFx̃(x) ⇒ Renewal Equation
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Renewal Function E[ñ(t)]

3. Lm(r) ?←→ Lx̃(r) (Laplace Transform of x̃)
(Laplace Transform of m(t) = Lm(r))

Answer:

Lm(r) =
Lx̃(r)

r[1− Lx̃(r)]
<Homework> Prove it.

4. Asymptotic behavior of m(t):

lim
t→∞

m(t)
t

= lim
t→∞

E[ñ(t)]
t

=?
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Stopping Time (Rule)

Definition. Ñ , an integer-valued r.v., is said to be a “stopping time” for
a set of independent random variables x̃1, x̃2, . . . if event {Ñ = n} is
independent of x̃n+1, x̃n+2, . . .

Example 1.

• Let x̃1, x̃2, . . . be independent random variables,

• P [x̃n = 0] = P [x̃n = 1] = 1/2, n = 1, 2, . . .

• if Ñ = min{n : x̃1 + . . . + x̃n = 10}
→ Is Ñ a stopping time for x̃1, x̃2, . . .?

Answer: .
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Stopping Time (Rule)

Example 2.

• ñ(t), X = {x̃n, n = 1, 2, 3, . . .},
• S = {S̃n, n = 0, 1, 2, 3, . . .},
• S̃n = S̃n−1 + x̃n

1
~x 2

~x 3
~x

4
~x 5

~x

1

~
S 2

~
S 3

~
S 4

~
S 5

~
S

t

)(~ tn

→ Is ñ(t) the stopping time of X = {x̃n, n = 1, 2, . . .}?
Answer:
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Stopping Time (Rule)

Example 3. Is ñ(t) + 1 the stopping time for {x̃n}?

Answer:
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Stopping Time - from Ĩn

Definition. Ñ , an integer-valued r.v. is said to be a stopping time for a
set of independent random variables {x̃n, n ≥ 1}, if for each n > 1, Ĩn,
conditional on x̃1, x̃2, . . . , x̃n−1, is independent of {x̃k, k ≥ n}

Define. Ĩn - a decision rule for stopping time Ñ , n ≥ 1

Ĩn =

⎧⎨
⎩ 1, if the nth observation is to be made;

0, Otherwise

1. ··· Ñ is the stopping time
··· Ĩn depends on x̃1, . . . , x̃n−1 but not x̃n, x̃n+1, . . .

2. Ĩn is also an indicator function of event {Ñ ≥ n},

i.e., Ĩn =

⎧⎨
⎩ 1, if Ñ ≥ n;

0, Otherwise;
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Stopping Time - from Ĩn

Because
• If Ñ ≥ n, then nth observation must be made;
• Since Ñ ≥ n implies Ñ ≥ n− 1 and happily, Ĩn = 1 implies

Ĩn−1 = 1

··· Stopping time⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{Ñ = n}, is

or

Ĩn is
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Wald’s Equation

Theorem. If {x̃n, n ≥ 1} are i.i.d. random variables with finite mean
E[x̃], and if Ñ is the stopping time for {x̃n, n ≥ 1}, such that
E[Ñ ] <∞. Then,

E

⎡
⎣ Ñ∑

n=1

x̃n

⎤
⎦ = E[Ñ ] · E[x̃]

Proof.
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Wald’s Equation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For Wald’s Theorem to be applied, other than {x̃i, i ≥ 1}
1. Ñ must be a stopping time; and

2. E[Ñ ] <∞
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Wald’s Equation

Example. (Example 3.2.3 – Simple Random Walk, [Kao])

2

1

{x̃i} i.i.d. with: P (x̃ = 1) = p

P (x̃ = −1) = 1− p = q

S̃n =
n∑

x̃k
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Wald’s Equation

• Let Ñ = min{n|S̃n = 1}

Prof. Shun-Ren Yang, CS, NTHU 24



Wald’s Equation

• Let M̃ = min{n|S̃n = 1} − 1
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Corollary

Before proving lim
t→∞

m(t)
t
→ 1

X̄
,

Corollary. If X̄ <∞, then

E[S̃ñ(t)+1] = X̄[m(t) + 1]

Proof.
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The Elementary Renewal Theorem

Theorem.

m(t)
t
→ 1

X̄
as t→∞

Proof.
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Blackwell’s Theorem

• Ensemble Average.

– to determine the expected renewal rate in the limit of large t,
without averaging from 0→ t (time average)

• Question.

– are there some values of t at which renewals are more likely than
others for large t ?

∞
4+∞t 8+∞t 12+∞t

t

– An example. If each inter-renewal interval {x̃i, i = 1, 2, . . .} takes
on integer number of time units, e.g., 0, 4, 8, 12, . . . , then
expected rate of renewals is zero at other times. Such random
variable is said to be “lattice”.
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Blackwell’s Theorem

– Definitions.
∗ A nonnegative random variable x̃ is said to be lattice if there

exists d ≥ 0 such that
∞∑

n=0

P [x̃ = nd] = 1

∗ That is, x̃ is lattice if it only takes on integral multiples of some
nonnegative number d. The largest d having this property is said
to be the period of x̃. If x̃ is lattice and F is the distribution
function of x̃, then we say that F is lattice.

• Answer.

– Inter-renewal interval random variables are not lattice
⇒ uniform expected rate of renewals in the limit of large t.
(Blackwell’s Theorem)
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Blackwell’s Theorem

Theorem. If, for {x̃i, i ≥ 1}, which are not lattice, then, for any δ > 0,

lim
t→∞[m(t + δ)−m(t)] =

δ

X̄

If the inter-renewal distribution is lattice with period d, then for any
integer n ≥ 1,

lim
n→∞m(nd) =

d

X̄
(or lim

t→∞[m(t + nd)−m(t)] =
nd

X̄
)

Proof. (omitted)
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Blackwell’s Theorem

For non-lattice inter-renewal process {x̃i, i ≥ 1},
1. ··· x̃i > 0⇒ No multiple renewals (single arrival)

2. From Blackwell’s Theorem, the probability of a renewal in a small
interval (t, t + δ] tends to δ/X̄ + o(δ) as t→∞,

··· Limiting distribution of renewals in (t, t + δ] satisfies

lim
t→∞P [ñ(t + δ)− ñ(t) = 1] =

δ

X̄
+ o(δ)

lim
t→∞P [ñ(t + δ)− ñ(t) = 0] = 1− δ

X̄
+ o(δ)

lim
t→∞P [ñ(t + δ)− ñ(t) ≥ 2] = o(δ)
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Blackwell’s Theorem

⇒
single arrival Stationary Independent

Increment Increment

Poisson

Renewal

Process

(Non-lattice)
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Regenerative Process

Regenerative Process

• Z = {Z̃t, t ≥ 0}; S = {S̃n, n ≥ 0} is a renewal process;

0

~
S

1
~x 1

~
S

1

~
−mS mS

~

1t 2t nt

1t 2t nt

t

t0

• Z is said to be a regenerative process if

E[f(Z̃S̃m+t1
, Z̃S̃m+t2

, . . . , Z̃S̃m+tn
)|Z̃u; u ≤ S̃m]

=
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Regenerative Process

That is,

Let W̃t = f(Z̃t+t1 , Z̃t+t2 , . . . , Z̃t+tn).

Let ˆ̃Zu = Z̃T+u ( ˆ̃Z is the future process obtained from Z̃

by taking T = S̃m as the time origin.)

··· W̃T = f(Z̃T+t1 , . . . , Z̃T+tn)

= f(Z̃t1 , . . . , Z̃tn) = ˆ̃W 0

Then, the regenerative property says:

1. E[ ˆ̃W 0|Zu; u < T ] = E[ ˆ̃W 0]→ Future process Ẑ is independent of
the past history before T .

2. E[ ˆ̃W 0] = E[W̃0]→ Probability law of Ẑ is the same as that of Z
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Regenerative Process

Example 1.

0
~u

0

~
S 1

~u 1

~
S

2
~u 2

~
S

X XO O X O

• Let Z = {Z̃t, t ≥ 0}, be the queue size at time t for a single sever
queueing system, subject to Poisson process of arrivals and General
i.i.d. service time distribution (M/G/1).
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Regenerative Process

• Time origin = the instant of departure which left behind 0
customers;

• Then, Z is the regenerative process with regeneration time process
S = {S̃n, n ≥ 0} (shown as “©”).

• That is, every time a departure occurs leaving behind an empty
system, the future of Z after such a time has exactly the same
probability law as the process Z starting at time 0.

Example 2.

• Time origin = the instant of departure leaving behind exactly one
customers;

• Then, Z is the regenerative process with regeneration time process
u = {ũn, n ≥ 0} (shown as “X”).
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Renewal Theory

• The main tool for studying regenerative processes in the absence of
future properties

• To study Z̃t = i (e.g. number of customers in the system at time t = i)

– g(t) = P [Z̃t = i] =? (pdf)

– lim
t→∞ g(t) =? (limiting pdf)

• Conditioning the event Z̃t = i on the time S̃1 of the first generation,

··· Z is a regenerative process,

··· Ẑ (∆= ZS̃1+t) has the same probability law as Z

0 t

sS =1

~sS =1

~

t
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Renewal Theory

– Case 1: if S̃1 = s ≤ t⇒

– Case 2: if S̃1 = s > t⇒ ?

• Solving g(t) −→ solving h(t) (fS̃(s) is known)

• Solving lim
t→∞ g(t) =? (Key Renewal Theorem !!)
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Renewal Theory

Example. Renewal function m(t) = E[ñ(t)] =?
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Renewal Theory

Question. How to remove the recursive relationship in the renewal-type
equation?

Solution. Take Laplace transform and invert it.
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Renewal Theory

Example 1.

• X = {x̃i} i.i.d. inter-arrival time, mean X̄,

• Recall: E[S̃Ñ(t)+1] = X̄[m(t) + 1]

• Prove it using Renewal-Type Equation and its solution.

Answer.
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Renewal Theory

Example 2. Renewal function m(t)

m(t) = F (t) +
∫ t

0
m(t− x)fx̃(x)dx

↓
m(t) = F (t) +

∫ t

0
F (t− x)dm(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<Question> lim
t→∞ g(t) =?
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Key Renewal Theorem

Theorem. If Fx̃ is non-lattice, and if h(t) is directly Riemann integrable

(i.e., h(t) ≥ 0, non-increasing,
∫ ∞

0
h(t)dt <∞), (integrable with

respect to time exists),
then,

lim
t→∞ g(t) = lim

t→∞

∫ t

0
h(t− x)dm(x)

=
1
X̄

∫ ∞

0
h(t)dt

where m(x) =
∞∑

n=1

Fn(x)

X̄ =
∫ ∞

0
F̄ (x)dx

Proof. (omitted)
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Key Renewal Theorem

Note. Riemann Integral and Directly Riemann Integrable

1. Riemann Integral (RI)

a 1x 2x0x b

)(tf

a partition of [a b] (not necessary“even”)

. . .

2. Directly Riemann Integrable (DRI)

0 b b ...b

)(tf

∞
t

area (inf)=area (sup)

∫
∞

∞<=
0

)( dttf (converge)

(     DRI          RI)
imp.

∴
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Key Renewal Theorem

Definition. f(t), defined on [0,∞], is said to be D.R. Integrable, (defined
as f ∈ D), for every b > 0, mn(b) and mn(b) be the sup and inf of
f(t), i.e.,

mn(b) = sup{f(t) : nb ≤ t < (n + 1)b}
mn(b) = inf{f(t) : nb ≤ t < (n + 1)b}

if ∞∑
n=0

mn(b) and
∞∑

n=0

mn(b) are finite, and

lim
b→0

b ·
∞∑

n=0

mn(b) = lim
b→0

b ·
∞∑

n=0

mn(b) =
∫ ∞

0
f(t)dt <∞

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Key Renewal Theorem

• Sufficient conditions for an f(t) to be D.R. Integrable

1. f(t) ≥ 0 ∀t
2. f(t) non-increasing

3.
∫ ∞

0
f(t)dt <∞
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Application 1 : Residual Life, Age, and Total Life

)(
~

tT

)(
~

~
tN

S

)(
~

tA

t

)(
~

tY

1)(
~

~
+tN

S

• For time t,

– Ỹ (t) = S̃Ñ(t)+1 − t (Residual Life, Excess life, Forward recurrence
time)

– Ã(t) = t− S̃Ñ(t) (Age, Current life, Backward recurrence time)

– T̃ (t) = Ỹ (t) + Ã(t) = x̃Ñ(t)+1 (life, spread, recurrence time)

Prof. Shun-Ren Yang, CS, NTHU 47



Application 1 : Residual Life, Age, and Total Life

To find: (Ỹ (t))

• FỸ (t)(x) =? (F̄Ỹ (t)(x) =?) (Renewal-Type Equation & solution)

• lim
t→∞FỸ (t)(x) =? (Key Renewal Theorem)

• lim
t→∞E[Ỹ (t)] =? (FỸ (t))
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Application 1 : Residual Life, Age, and Total Life

lim
t→∞E[Ỹ (t)] = lim

t→∞

∫ ∞

0
F̄Ỹ (t)(x)dx

=

Prof. Shun-Ren Yang, CS, NTHU 49



Application 1 : Residual Life, Age, and Total Life

To find: (Ã(t))

• FÃ(t)(x) =? (F̄Ã(t)(x) =?)

)(
~

tA )(
~

tY

)(
~

~
tN

S xt−
x

t
1)(

~
~

+tN
S

Notice that :

• Ã(t) > x⇔
• P (Ã(t) > x) = 0, where

Prof. Shun-Ren Yang, CS, NTHU 50



Application 1 : Residual Life, Age, and Total Life

<Homework>

1. Find lim
t→∞FÃ(t)(x) =?

2. Find lim
t→∞E[Ã(t)] =?
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Application 1 : Residual Life, Age, and Total Life

To find: T̃ (t)

• FT̃ (t)(x) =?

• lim
t→∞FT̃ (t)(x) =?
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Application 1 : Residual Life, Age, and Total Life

<Homework.> Find lim
t→∞E[T̃ (t)] =?
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The Inspection Paradox

0
x~ 0

~x

)(
~

tA )(
~

tY
)(

~
tT

T̃ (t) = S̃Ñ(t)+1 − S̃Ñ(t) = X̃Ñ(t)+1
∆= x̃0

From above, we get: Fx̃0(x) =
1

E[x̃]
·
∫ x

0
y · dFx̃(y)

From definition, we get: Fx̃(x) =
∫ x

0
dFx̃(y)

Why Fx̃0(x) �= Fx̃(x) ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The Inspection Paradox

• That is, the length of the renewal interval containing t is
stochastically greater than the length of an ordinary renewal interval

– If you drop a point to a segmented time line, the segment that the
point falls into should be larger than other segments

– “Inspection paradox” [Ref. Ross, P.118-Remark]
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Application 2 : Alternating Renewal Process

What is the distribution of S̃Ñ(t), i.e., the time of the last renewal prior to
(or at) time t (will be used later)?

Lemma.

P [S̃Ñ(t) ≤ s] = F̄x̃1(t) +
∫ s

0
F̄x̃1(t− y)dm(y), s ≤ t

Proof.
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Application 2 : Alternating Renewal Process

Note: From the previous lemma, we get:

P [S̃Ñ(t) = 0] = F̄x̃1(t)

dFS̃Ñ(t)
(y) = F̄x̃1(t− y)dm(y)

↓ reasoning

dFS̃Ñ(t)
(y) = fS̃Ñ(t)

(y)dy

=
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Application 2 : Alternating Renewal Process

↓ To prove:

Alternating Renewal Theory (Conditioning on S̃Ñ(t))
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Alternating Renewal Processes

ON OFF ON OFF

kZ
~

kY
~

1

~
+kZ 1

~
+kY

Regeneration Times

{(Z̃k, Ỹk), k ≥ 1} are i.i.d.

⇒ Alternating Renewal Processes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z̃i ∼ FZ̃(t)

Ỹi ∼ FỸ (t)

Z̃i + Ỹi ∼ FX̃(t)

Theorem. If E[Z̃n + Ỹn] <∞, and FZ̃n+Ỹn
is non-arithmetic, then

lim
t→∞P [system is “ON” at time t] ∆= lim

t→∞P (t) =
E[Z̃n]

E[Z̃n] + E[Ỹn]
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Alternating Renewal Processes

Proof.
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Applications of the Alternating Renewal Theory

Computation of the distributions of Ã(t), Ỹ (t), and T̃ (t), i.e.,

limt→∞ P [Ã(t) ≤ x] =? (limt→∞ P [Ỹ (t) ≤ x] =?) (limt→∞ P [T̃ (t) ≤ x] =?)

1. • Let an on-off cycle correspond to a renewal interval.

• The system is “on” at time t if the age at t is less or equal to x,
i.e., “on” the first x units of a renewal interval.

x= x

FX ~
~
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Applications of the Alternating Renewal Theory

2.

lim
t→∞P [Ỹ (t) ≤ x] = lim

t→∞P [“OFF” at t]

=
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Applications of the Alternating Renewal Theory

3. Consider

⎧⎨
⎩ cycle time x̃ > x → “ON”

cycle time x̃ ≤ x → “OFF”

x>
x≤

3

~
S

4

~
S 5

~
S
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Application 3 : Compute E[Ỹ (t)] by conditioning S̃Ñ(t)

E[Ỹ (t)] = E[Ỹ (t)|S̃Ñ(t) = 0] · F̄ (t) +
∫ t

0
E[Ỹ (t)|S̃Ñ(t) = y]F̄ (t− y)dm(y)

=
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Renewal Reward Process and Applications

0
1

~x

1

~
R

2
~x

2

~
R

3
~x

3

~
R

nx~

nR
~

)(
~

tN

t

Fxi ~~

• R̃n
∆= the reward earned at the time of the nth renewal;

• R̃n ≥ 0, for all n;

• {R̃n, n ≥ 1} are i.i.d., with mean E[R̃];

• R̃n may depend on x̃n;

• ··· {(R̃n, x̃n), n ≥ 1} i.i.d. random variables;

• Let R̃(t) =
Ñ(t)∑
n=1

R̃n
∆= the total reward earned by t
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Renewal Reward Process and Applications

Theorem. If E[R̃] <∞, E[x̃] <∞, then

1.

R̃(t)
t
→ E[R̃]

E[x̃]
w.p.1 as t→∞

i.e., long-run average reward =

2.

E[R̃(t)]
t

→ E[R̃]
E[x̃]

as t→∞

i.e., expected long-run average reward =
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Renewal Reward Process and Applications

Note: The Renewal Reward Theorem says that:

R̃(t)
t
→ E[R̃]

E[x̃]
w.p.1 as t→∞, i.e., lim

t→∞

Ñ(t)∑
n=1

R̃n

t︸ ︷︷ ︸
Time Average

=
E[R̃]
E[x̃]

··· The long-run average reward

=

=

=
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Application # 1 : (Alternating Renewal Processes)

ON OFF ON OFF

kZ
~

kY
~

1

~
+kZ 1

~
+kY

Regeneration Times
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Application # 2 : (Time Avg. of Age and Residual life)

x~

)(
~

tA

t

)1/(,1 =tt

To find lim
t→∞

∫ t

0
Ã(s)ds

t
=?
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Application # 2 : (Time Avg. of Age and Residual life)
)(

~
tY

x~

s t

To find lim
t→∞

∫ t

0
Ỹ (s)ds

t
=? Note that Ỹ (s) = x̃− s.

Prof. Shun-Ren Yang, CS, NTHU 70



Application # 3 : The Little’s Formula – Part I

• A G/G/1 queueing server:

– Let X1, X2, . . . denote the interarrival times between customers;
and let Y1, Y2, . . . denote the service times of successive customers.
We shall assume that

E[Yi] < E[Xi] <∞

• Suppose that the first customer arrives at time 0 and let n(t) denote
the number of customers in the system at time t. Define

L = lim
t→∞

∫ t

0
n(s)ds/t

• Imagine that a reward is being earned at time s at rate n(s). If we let
a cycle correspond to the start of a busy period, then the process
restarts itself each cycle.
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Application # 3 : The Little’s Formula – Part I

• As L represents the long-run average reward, it follows from the
Renewal Reward Theorem that

L =

=
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Application # 3 : The Little’s Formula – Part II

• Let Wi denote the amount of time the ith customer spends in the
system and define

W = lim
n→∞

W1 + · · ·+ Wn

n

• Let N denote the number of customers served in a cycle, then W is
the average reward per unit time of a renewal process in which the
cycle time is N and the cycle reward is W1 + · · ·+ WN , and, hence,

W =

=
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Application # 3 : The Little’s Formula – Part III

Theorem. Let λ = 1/E[Xi] denote the arrival rate. Then

L = λW

Proof.
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Application # 3 : The Little’s Formula – Part III

Remarks

• The Little’s Formula states that

• By replacing “the system” by “the queue” the same proof shows that

• By replacing “the system” by “service” we have that
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Regenerative Processes

5

~
S 6

~
S 7

~
S

t

]~[xE ]~[,~~ xEFx

Stochastic process Z = {Z̃(t), t ≥ 0} with state space S = {0, 1, 2, . . .} is
called a regenerative process if the regenerative property holds.

Theorem. If E[x̃] <∞

lim
t→∞P [Z̃(t) = j] =

E[amount of time in state j in a cycle]
E[cycle length]

=

∫ ∞

0
P [Z̃(t) = j, x̃1 > t]dt

E[x̃]
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Regenerative Processes

Proof.
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Regenerative Processes

Theorem. For a regenerative process with E[x̃1] <∞, with probability 1,

lim
t→∞

[time in j during (0, t)]
t

=
E[time in state j during a cycle]

E[time of a cycle]

Proof.

Homework. to be announced on the web
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Delayed Renewal Processes

• We often consider a counting process for which the first interarrival
time has a different distribution from the remaining ones.

• For instance, we might start observing a renewal process at some time
t > 0. If a renewal does not occur at t, then the distribution of the
time we must wait until the first observed renewal will not be the same
as the remaining interarrival distributions.

• Formally, let {Xn, n = 1, 2, . . .} be a sequence of independent
nonnegative random variables with X1 having distribution G, and Xn

having distribution F , n > 1. Let S0 = 0, Sn =
∑n

1 Xi, n ≥ 1, and
define

ND(t) = sup{n : Sn ≤ t}.
• Definition. The stochastic process {ND(t), t ≥ 0} is called a general

or a delayed renewal process.
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Delayed Renewal Processes

• When G = F , we have, of course, an ordinary renewal process. As in
the ordinary case, we have

P{ND(t) = n} =

=

• Let mD(t) = E[ND(t)]. Then it is easy to show that

mD(t) =

and by taking transforms, we obtain

m̃D(s) =
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Delayed Renewal Processes

By using the corresponding result for the ordinary renewal process, it is
easy to prove similar limit theorems for the delayed process. Let
µ =

∫ ∞
0 xdF (x).

Proposition.

1. With probability 1,

ND(t)
t
→ 1

µ
as t→∞

2.

mD(t)
t
→ 1

µ
as t→∞
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Delayed Renewal Processes

3. If F is not lattice, then

mD(t + a)−mD(t)→ a

µ
as t→∞

4. If F and G are lattice with period d, then

E[number of renewals at nd]→ d

µ
as n→∞

5. If F is not lattice, µ <∞, and h directly Riemann integrable, then∫ ∞

0
h(t− x)dmD(x)→

∫ ∞

0
h(t)dt/µ
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Delayed Renewal Processes

• In the same way we proved the result in the case of an ordinary
renewal process, it follows that the distribution of the time of the last
renewal before (or at) t is given by

P{SN(t) ≤ s} =

• When µ <∞, the distribution function

Fe(x) =

is called the equilibrium distribution of F . Its Laplace transform is
given by

F̃e(s) =
∫ ∞

0
e−sxdFe(x)

=
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Delayed Renewal Processes

• The delayed renewal process with G = Fe is called the equilibrium
renewal process and is extremely important.

• For suppose that we start observing a renewal process at time t. Then
the process we observe is a delayed renewal process whose initial
distribution is the distribution of Y (t) (i.e., residual life). Thus, for t

large, it follows that the observed process is the equilibrium renewal
process.
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Delayed Renewal Processes

Let YD(t) denote the residual life at t for a delayed renewal process.

Theorem. For the equilibrium renewal process:

1. mD(t) = t/µ

2. P{YD(t) ≤ x} = Fe(x) for all t ≥ 0

3. {ND(t), t ≥ 0} has stationary increments

Proof.
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Delayed Renewal Processes
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