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(i) nth arrival epoch S̃n is

S̃n = x̃1 + x̃2 + . . . + x̃n =
∑n

i=1 x̃i

S̃0 = 0

(ii) Number of arrivals at time t is: ñ(t). Notice that:

{ñ(t) ≥ n}
iff
⇔ {S̃n ≤ t}, {ñ(t) = n}

iff
⇔ {S̃n ≤ t and S̃n+1 > t}
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Introduction

Arrival Process: X = {x̃i, i = 1, 2, . . .}; x̃i’s can be any

S = {S̃i, i = 0, 1, 2, . . .}; S̃i’s can be any

N = {ñ(t), t ≥ 0};−→ called arrival process

Renewal Process: X = {x̃i, i = 1, 2, . . .}; x̃i’s are i.i.d.

S = {S̃i, i = 0, 1, 2, . . .}; S̃i’s are general distributed

N = {ñ(t), t ≥ 0};−→ called renewal process

Poisson Process: X = {x̃i, i = 1, 2, . . .}; x̃i’s are iid exponential distributed

S = {S̃i, i = 0, 1, 2, . . .}; S̃i’s are Erlang distributed

N = {ñ(t), t ≥ 0};−→ called Poisson process
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Counting Processes

• A stochastic process N = {ñ(t), t ≥ 0} is said to be a counting process

if ñ(t) represents the total number of “events” that have occurred up

to time t.

• From the definition we see that for a counting process ñ(t) must

satisfy:

1. ñ(t) ≥ 0.

2. ñ(t) is integer valued.

3. If s < t, then ñ(s) ≤ ñ(t).

4. For s < t, ñ(t) − ñ(s) equals the number of events that have

occurred in the interval (s, t].
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Definition 1: Poisson Processes

The counting process N = {ñ(t), t ≥ 0} is a Poisson process with rate λ

(λ > 0), if:

1. ñ(0) = 0

2. Independent increments relaxed ⇒ Modulated Poisson Process

P [ñ(t) − ñ(s) = k1|ñ(r) = k2, r ≤ s < t] = P [ñ(t) − ñ(s) = k1]

3. Stationary increments relaxed ⇒ Non-homogeneous Poisson Process

P [ñ(t + s) − ñ(t) = k] = P [ñ(l + s) − ñ(l) = k]

4. Single arrival relaxed ⇒ Compound Poisson Process

P [ñ(h) = 1] = λh + o(h)

P [ñ(h) ≥ 2] = o(h)
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Definition 2: Poisson Processes

The counting process N = {ñ(t), t ≥ 0} is a Poisson process with rate λ

(λ > 0), if:

1. ñ(0) = 0

2. Independent increments

3. The number of events in any interval of length t is Poisson distributed

with mean λt. That is, for all s, t ≥ 0

P [ñ(t + s) − ñ(s) = n] = e−λt (λt)n

n!
, n = 0, 1, . . .

Prof. Shun-Ren Yang, CS, NTHU 6



Theorem: Definitions 1 and 2 are equivalent.

Proof. We show that Definition 1 implies Definition 2, and leave it to the

reader to prove the reverse. To start, fix u ≥ 0 and let

g(t) = E[e−uñ(t)]

We derive a differential equation for g(t) as follows:

g(t + h) = E[e−uñ(t+h)]

= E
{

e−uñ(t)e−u[ñ(t+h)−ñ(t)]
}

= E
[

e−uñ(t)
]

E
{

e−u[ñ(t+h)−ñ(t)]
}

by independent increments

= g(t)E
[

e−uñ(h)
]

by stationary increments (1)
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Theorem: Definitions 1 and 2 are equivalent.

Conditioning on whether ñ(t) = 0 or ñ(t) = 1 or ñ(t) ≥ 2 yields

E
[

e−uñ(h)
]

= 1 − λh + o(h) + e−u(λh + o(h)) + o(h)

= 1 − λh + e−uλh + o(h) (2)

From (1) and (2), we obtain that

g(t + h) = g(t)(1 − λh + e−uλh) + o(h)

implying that

g(t + h) − g(t)

h
= g(t)λ(e−u − 1) +

o(h)

h
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Theorem: Definitions 1 and 2 are equivalent.

Letting h → 0 gives

g′(t) = g(t)λ(e−u − 1)

or, equivalently,
g′(t)

g(t)
= λ(e−u − 1)

Integrating, and using g(0) = 1, shows that

log(g(t)) = λt(e−u − 1)

or

g(t) = eλt(e−u−1) → the Laplace transform of a Poisson r. v.

Since g(t) is also the Laplace transform of ñ(t), ñ(t) is a Poisson r. v.
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The Inter-Arrival Time Distribution

Theorem. Poisson Processes have exponential inter-arrival time

distribution, i.e., {x̃n, n = 1, 2, . . .} are i.i.d and exponentially

distributed with parameter λ (i.e., mean inter-arrival time = 1/λ).

Proof.

x̃1 : P (x̃1 > t) = P (ñ(t) = 0) =
e−λt(λt)0

0!
= e−λt

·
·
· x̃1 ∼ e(t;λ)

x̃2 : P (x̃2 > t|x̃1 = s)

= P{0 arrivals in (s, s + t]|x̃1 = s}

= P{0 arrivals in (s, s + t]}(by independent increment)

= P{0 arrivals in (0, t]}(by stationary increment)

= e−λt
·
·
· x̃2 is independent of x̃1 and x̃2 ∼ exp(t;λ).

⇒ The procedure repeats for the rest of x̃i’s.
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The Arrival Time Distribution of the nth Event

Theorem. The arrival time of the nth event, S̃n (also called the waiting

time until the nth event), is Erlang distributed with parameter (n, λ).

Proof. Method 1 :

·
·
· P [S̃n ≤ t] = P [ñ(t) ≥ n] =

∞
∑

k=n

e−λt(λt)k

k!

·
·
· fS̃n

(t) =
λe−λt(λt)n−1

(n − 1)!
(exercise)

Method 2 :

fS̃n
(t)dt = dFS̃n

(t) = P [t < S̃n < t + dt]

= P{n − 1 arrivals in (0, t] and 1 arrival in (t, t + dt)} + o(dt)

= P [ñ(t) = n − 1 and 1 arrival in (t, t + dt)] + o(dt)

= P [ñ(t) = n − 1]P [1 arrival in (t, t + dt)] + o(dt)(why?)
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The Arrival Time Distribution of the nth Event

=
e−λt(λt)n−1

(n − 1)!
λdt + o(dt)

·
·
· lim

dt→0

fS̃n
(t)dt

dt
= fS̃n

(t) =
λe−λt(λt)n−1

(n − 1)!
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Conditional Distribution of the Arrival Times

Theorem. Given that ñ(t) = n, the n arrival times S̃1, S̃2, . . . , S̃n have

the same distribution as the order statistics corresponding to n i.i.d.

uniformly distributed random variables from (0, t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Order Statistics. Let x̃1, x̃2, . . . , x̃n be n i.i.d. continuous random

variables having common pdf f . Define x̃(k) as the kth smallest value

among all x̃i’s, i.e., x̃(1) ≤ x̃(2) ≤ x̃(3) ≤ . . . ≤ x̃(n), then x̃(1), . . . , x̃(n)

are known as the “order statistics” corresponding to random variables

x̃1, . . . , x̃n. We have that the joint pdf of x̃(1), x̃(2), . . . , x̃(n) is

fx̃(1),x̃(2),...,x̃(n)
(x1, x2, . . . , xn) = n!f(x1)f(x2) . . . f(xn),

where x1 < x2 < . . . < xn (check the textbook [Ross]).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Conditional Distribution of the Arrival Times

Proof. Let 0 < t1 < t2 < . . . < tn+1 = t and let hi be small enough so that

ti + hi < ti+1 , i = 1, . . . , n.

·
·
· P [ti < S̃i < ti + hi, i = 1, . . . , n|ñ(t) = n]

=

P





exactly one arrival in each [ti, ti + hi]

i = 1, 2, . . . , n, and no arrival elsewhere in [0, t]





P [ñ(t) = n]

=
(e−λh1λh1)(e

−λh2λh2) . . . (e−λhnλhn)(e−λ(t−h1−h2...−hn))

e−λt(λt)n/n!

=
n!(h1h2h3 . . . hn)

tn

·
·
·

P [ti < S̃i < ti + hi, i = 1, . . . , n|ñ(t) = n]

h1h2 . . . hn
=

n!

tn
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Conditional Distribution of the Arrival Times

Taking lim
hi→0,i=1,...,n

( ), then

fS̃1,S̃2,...,S̃n|ñ(t)(t1, t2, . . . , tn|n) =
n!

tn
, 0 < t1 < t2 < . . . < tn.
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Conditional Distribution of the Arrival Times

Example (see Ref [Ross], Ex. 2.3(A) p.68). Suppose that travellers arrive

at a train depot in accordance with a Poisson process with rate λ. If

the train departs at time t, what is the expected sum of the

waiting times of travellers arriving in (0, t)? That is, E[
∑ñ(t)

i=1 (t−S̃i)] =?

t
. . . . . . . . . . 

1
~
S 2

~
S 3

~
S )(~

~
tnS
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Conditional Distribution of the Arrival Times

Answer.
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Superposition of Independent Poisson Processes

Theorem. Superposition of independent Poisson Processes

(λi, i = 1, . . . , N), is also a Poisson process with rate
N
∑

1

λi.

Poisson

Poisson

Poisson

Poisson

1λ

2λ

Nλ

rate  = ∑
N

1
λi

<Homework> Prove the theorem (note that a Poisson process must

satisfy Definitions 1 or 2).
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Decomposition of a Poisson Process

Theorem.

• Given a Poisson process N = {ñ(t), t ≥ 0};

• If ñi(t) represents the number of type-i events that occur by time

t, i = 1, 2;

• Arrival occurring at time s is a type-1 arrival with probability p(s),

and type-2 arrival with probability 1 − p(s)

⇓then

• ñ1, ñ2 are independent,

• ñ1(t) ∼ P (k;λtp), and

• ñ2(t) ∼ P (k;λt(1 − p)), where p =
1

t

∫ t

0
p(s)ds
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Decomposition of a Poisson Process

Poisson
∫ ))(;( dsspk λPoisson

∫ − ))](1[;( dsspk λPoisson

λ
p(s)

1-p(s)

special case: If p(s) = p is constant, then

Poisson

pλPoisson rate

)1( p−λPoisson rate

λ
p

1-p
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Decomposition of a Poisson Process

Proof.
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Decomposition of a Poisson Process

Example (An Infinite Server Queue, textbook [Ross]).

Poisson λ departure

∞

G

• Gs̃(t) = P (S̃ ≤ t), where S̃ = service time

• Gs̃(t) is independent of each other and of the arrival process

• ñ1(t): the number of customers which have left before t;

• ñ2(t): the number of customers which are still in the system at

time t;

⇒ ñ1(t) ∼? and ñ2(t) ∼?
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Decomposition of a Poisson Process

Answer.
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Non-homogeneous Poisson Processes

• The counting process N = {ñ(t), t ≥ 0} is said to be a non-stationary

or non-homogeneous Poisson Process with time-varying intensity

function λ(t), t ≥ 0, if:

1. ñ(0) = 0

2. N has independent increments

3. P [ñ(t + h) − ñ(t) ≥ 2] = o(h)

4. P [ñ(t + h) − ñ(t) = 1] = λ(t) · h + o(h)

• Define “integrated intensity function” m(t) =

∫ t

0
λ(t′)dt′.

Theorem.

P [ñ(t + s) − ñ(t) = n] =
e−[m(t+s)−m(t)][m(t + s) − m(t)]n

n!

Proof. < Homework >.
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Non-homogeneous Poisson Processes

Example. The “output process” of the M/G/∞ queue is a

non-homogeneous Poisson process having intensity function

λ(t) = λG(t), where G is the service distribution.

Hint. Let D(s, s + r) denote the number of service completions in the

interval (s, s + r] in (0, t]. If we can show that

• D(s, s + r) follows a Poisson distribution with mean λ
∫ s+r
s G(y)dy,

and

• the numbers of service completions in disjoint intervals are

independent,

then we are finished by definition of a non-homogeneous Poisson

process.
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Non-homogeneous Poisson Processes

Answer.
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Non-homogeneous Poisson Processes

• Because of

– the independent increment assumption of the Poisson arrival

process, and

– the fact that there are always servers available for arrivals,

⇒ the departure process has independent increments
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Compound Poisson Processes

• A stochastic process {x̃(t), t ≥ 0} is said to be a compound Poisson

process if

– it can be represented as

x̃(t) =

ñ(t)
∑

i=1

ỹi, t ≥ 0

– {ñ(t), t ≥ 0} is a Poisson process

– {ỹi, i ≥ 1} is a family of independent and identically distributed

random variables which are also independent of {ñ(t), t ≥ 0}

• The random variable x̃(t) is said to be a compound Poisson random

variable.

• E[x̃(t)] = and V ar[x̃(t)] = .
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Compound Poisson Processes

• Example (Batch Arrival Process). Consider a parallel-processing

system where each job arrival consists of a possibly random number

of tasks. Then we can model the arrival process as a compound

Poisson process, which is also called a batch arrival process.

• Let ỹi be a random variable that denotes the number of tasks

comprising a job. We derive the probability generating function

Px̃(t)(z) as follows:

Px̃(t)(z) = E
[

zx̃(t)
]

= E [E [ ]] = E
[

E
[

zỹ1+···+ỹñ(t) |ñ(t)
]]

= E
[

E
[

zỹ1+···+ỹñ(t)

]]

(by independence of ñ(t) and {ỹi})

= E
[

E
[

zỹ1

]

· · ·E
[

zỹñ(t)

]]

(by independence of ỹ1, · · · , ỹñ(t))

= E [ ] = Pñ(t) (Pỹ(z))
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Modulated Poisson Processes

• Assume that there are two states, 0 and 1, for a “modulating process.”

0 1

• When the state of the modulating process equals 0 then the arrive rate

of customers is given by λ0, and when it equals 1 then the arrival rate

is λ1.

• The residence time in a particular modulating state is exponentially

distributed with parameter µ and, after expiration of this time, the

modulating process changes state.

• The initial state of the modulating process is randomly selected and is

equally likely to be state 0 or 1.
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Modulated Poisson Processes

• For a given period of time (0, t), let Υ be a random variable that

indicates the total amount of time that the modulating process has

been in state 0. Let x̃(t) be the number of arrivals in (0, t).

• Then, given Υ, the value of x̃(t) is distributed as a non-homogeneous

Poisson process and thus

P [x̃(t) = n|Υ = τ ] =

• As µ → 0, the probability that the modulating process makes no

transitions within t seconds converges to 1, and we expect for this case

that

P [x̃(t) = n] =
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Modulated Poisson Processes

• As µ → ∞, then the modulating process makes an infinite number of

transitions within t seconds, and we expect for this case that

P [x̃(t) = n] = , where β =
λ0 + λ1

2

• Example (Modeling Voice).

– A basic feature of speech is that it comprises an alternation of

silent periods and non-silent periods.

– The arrival rate of packets during a talk spurt period is Poisson

with rate λ1 and silent periods produce a Poisson rate with λ0 ≈ 0.

– The duration of times for talk and silent periods are exponentially

distributed with parameters µ1 and µ0, respectively.

⇒ The model of the arrival stream of packets is given by a modulated

Poisson process.
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Poisson Arrivals See Time Averages (PASTA)

• PASTA says: as t → ∞

Fraction of arrivals who see the system in a given state

upon arrival (arrival average)

= Fraction of time the system is in a given state (time average)

= The system is in the given state at any random time

after being steady

• Counter-example (textbook [Kao]: Example 2.7.1)

0 1 2 3 4 5

1 1

1/2 1/2

service time = 1/2

inter-arrival time = 1
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Poisson Arrivals See Time Averages (PASTA)

– Arrival average that an arrival will see an idle system =

– Time average of system being idle =

• Mathematically,

– Let X = {x̃(t), t ≥ 0} be a stochastic process with state space S,

and B ⊂ S

– Define an indicator random variable

ũ(t) =







1, if x̃(t) ∈ B

0, otherwise

– Let N = {ñ(t), t ≥ 0} be a Poisson process with rate λ denoting the

arrival process
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Poisson Arrivals See Time Averages (PASTA)

then,

• Condition – For PASTA to hold, we need the lack of anticipation

assumption (LAA): for each t ≥ 0,

– the arrival process {ñ(t + u) − ñ(t), u ≥ 0} is independent of

{x̃(s), 0 ≤ s ≤ t} and {ñ(s), 0 ≤ s ≤ t}.

• Application:

– To find the waiting time distribution of any arriving customer

– Given: P[system is idle] = 1 − ρ; P[system is busy] = ρ
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Poisson Arrivals See Time Averages (PASTA)

Poisson

Poisson

Case 1: system is idle

Case 2: system is busy

⇒ P (w̃ ≤ t) = P (w̃ ≤ t|idle) · P (idle upon arrival)

+ P (w̃ ≤ t|busy) · P (busy upon arrival)
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Memoryless Property of the Exponential Distribution

• A random variable x̃ is said to be without memory, or memoryless, if

P [x̃ > s + t|x̃ > t] = P [x̃ > s] for all s, t ≥ 0 (3)

• The condition in Equation (3) is equivalent to

P [x̃ > s + t, x̃ > t]

P [x̃ > t]
= P [x̃ > s]

or

P [x̃ > s + t] = P [x̃ > s]P [x̃ > t] (4)

• Since Equation (4) is satisfied when x̃ is exponentially distributed (for

e−λ(s+t) = e−λse−λt), it follows that exponential random variable are

memoryless.

• Not only is the exponential distribution “memoryless,” but it is the

unique continuous distribution possessing this property.
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Comparison of Two Exponential Random Variables

Suppose that x̃1 and x̃2 are independent exponential random variables

with respective means 1/λ1 and 1/λ2. What is P [x̃1 < x̃2]?

P [x̃1 < x̃2] =

∫ ∞

0
P [x̃1 < x̃2|x̃1 = x]λ1e

−λ1xdx

=

∫ ∞

0
P [x < x̃2]λ1e

−λ1xdx

=

∫ ∞

0
e−λ2xλ1e

−λ1xdx

=

∫ ∞

0
λ1e

−(λ1+λ2)xdx

=
λ1

λ1 + λ2

Prof. Shun-Ren Yang, CS, NTHU 38



Minimum of Exponential Random Variables

Suppose that x̃1, x̃2, · · · , x̃n are independent exponential random variables,

with x̃i having rate µi, i = 1, · · · , n. It turns out that the smallest of the x̃i

is exponential with a rate equal to the sum of the µi.

P [min(x̃1, x̃2, · · · , x̃n) > x] = P [x̃i > x for each i = 1, · · · , n]

=
n
∏

i=1

P [x̃i > x] (by independence)

=
n
∏

i=1

e−µix

= exp

{

−

(

n
∑

i=1

µi

)

x

}

How about max(x̃1, x̃2, · · · , x̃n)? (exercise)

Prof. Shun-Ren Yang, CS, NTHU 39


