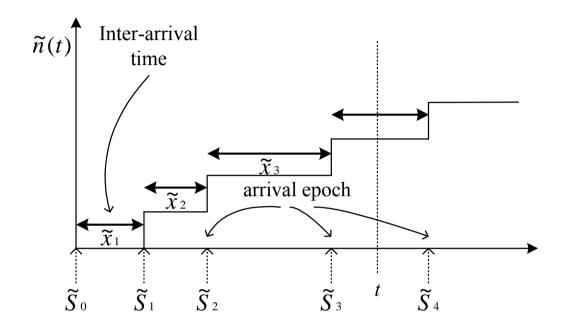
Chapter 2. Poisson Processes

Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Outline

- Introduction to Poisson Processes
 - Definition of arrival process
 - Definition of renewal process
 - Definition of Poisson process
- Properties of Poisson processes
 - Inter-arrival time distribution
 - Waiting time distribution
 - Superposition and decomposition
- Non-homogeneous Poisson processes (relaxing *stationary*)
- Compound Poisson processes (relaxing *single arrival*)
- Modulated Poisson processes (relaxing *independent*)
- Poisson Arrival See Average (PASTA)

Introduction



(i)
$$n_{th}$$
 arrival epoch \tilde{S}_n is
 $\tilde{S}_n = \tilde{x}_1 + \tilde{x}_2 + \ldots + \tilde{x}_n = \sum_{i=1}^n \tilde{x}_i$
 $\tilde{S}_0 = 0$
(ii) Number of arrivals at time t is: $\tilde{n}(t)$. Notice that:
 $\{\tilde{n}(t) \ge n\} \stackrel{iff}{\Leftrightarrow} \{\tilde{S}_n \le t\}, \{\tilde{n}(t) = n\} \stackrel{iff}{\Leftrightarrow} \{\tilde{S}_n \le t \text{ and } \tilde{S}_{n+1} > t\}$

Introduction

Arrival Process:
$$X = \{\tilde{x}_i, i = 1, 2, ...\}; \tilde{x}_i$$
's can be any
 $S = \{\tilde{S}_i, i = 0, 1, 2, ...\}; \tilde{S}_i$'s can be any
 $N = \{\tilde{n}(t), t \ge 0\}; \longrightarrow$ called arrival process

Renewal Process:
$$X = \{\tilde{x}_i, i = 1, 2, ...\}; \tilde{x}_i$$
's are i.i.d.
 $S = \{\tilde{S}_i, i = 0, 1, 2, ...\}; \tilde{S}_i$'s are general distributed
 $N = \{\tilde{n}(t), t \ge 0\}; \longrightarrow$ called renewal process

Poisson Process: $X = \{\tilde{x}_i, i = 1, 2, ...\}; \tilde{x}_i$'s are iid exponential distributed $S = \{\tilde{S}_i, i = 0, 1, 2, ...\}; \tilde{S}_i$'s are Erlang distributed $N = \{\tilde{n}(t), t \ge 0\}; \longrightarrow$ called Poisson process

Counting Processes

- A stochastic process N = {ñ(t), t ≥ 0} is said to be a counting process if ñ(t) represents the total number of "events" that have occurred up to time t.
- From the definition we see that for a counting process $\tilde{n}(t)$ must satisfy:
 - 1. $\tilde{n}(t) \ge 0$.
 - 2. $\tilde{n}(t)$ is integer valued.
 - 3. If s < t, then $\tilde{n}(s) \leq \tilde{n}(t)$.
 - 4. For s < t, $\tilde{n}(t) \tilde{n}(s)$ equals the number of events that have occurred in the interval (s, t].

Definition 1: Poisson Processes

The counting process $N = \{\tilde{n}(t), t \ge 0\}$ is a *Poisson process* with rate λ $(\lambda > 0)$, if:

- 1. $\tilde{n}(0) = 0$
- 2. Independent increments relaxed \Rightarrow Modulated Poisson Process

$$P[\tilde{n}(t) - \tilde{n}(s) = k_1 | \tilde{n}(r) = k_2, \ r \le s < t] = P[\tilde{n}(t) - \tilde{n}(s) = k_1]$$

3. Stationary increments | relaxed \Rightarrow Non-homogeneous Poisson Process

$$P[\tilde{n}(t+s) - \tilde{n}(t) = k] = P[\tilde{n}(l+s) - \tilde{n}(l) = k]$$

4. Single arrival relaxed \Rightarrow Compound Poisson Process

$$P[\tilde{n}(h) = 1] = \lambda h + o(h)$$
$$P[\tilde{n}(h) \ge 2] = o(h)$$

Definition 2: Poisson Processes

The counting process $N = \{\tilde{n}(t), t \ge 0\}$ is a *Poisson process* with rate λ $(\lambda > 0)$, if:

- 1. $\tilde{n}(0) = 0$
- 2. Independent increments
- 3. The number of events in any interval of length t is Poisson distributed with mean λt . That is, for all $s, t \ge 0$

$$P[\tilde{n}(t+s) - \tilde{n}(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 0, 1, \dots$$

Theorem: Definitions 1 and 2 are equivalent.

Proof. We show that Definition 1 implies Definition 2, and leave it to the reader to prove the reverse. To start, fix $u \ge 0$ and let

$$g(t) = E[e^{-u\tilde{n}(t)}]$$

We derive a differential equation for g(t) as follows:

$$g(t+h) = E[e^{-u\tilde{n}(t+h)}]$$

$$= E\left\{e^{-u\tilde{n}(t)}e^{-u[\tilde{n}(t+h)-\tilde{n}(t)]}\right\}$$

$$= E\left[e^{-u\tilde{n}(t)}\right]E\left\{e^{-u[\tilde{n}(t+h)-\tilde{n}(t)]}\right\}$$
 by independent increments

$$= g(t)E\left[e^{-u\tilde{n}(h)}\right]$$
 by stationary increments (1)

Theorem: Definitions 1 and 2 are equivalent.

Conditioning on whether $\tilde{n}(t) = 0$ or $\tilde{n}(t) = 1$ or $\tilde{n}(t) \ge 2$ yields

$$E\left[e^{-u\tilde{n}(h)}\right] = 1 - \lambda h + o(h) + e^{-u}(\lambda h + o(h)) + o(h)$$

= $1 - \lambda h + e^{-u}\lambda h + o(h)$ (2)

From (1) and (2), we obtain that

$$g(t+h) = g(t)(1 - \lambda h + e^{-u}\lambda h) + o(h)$$

implying that

$$\frac{g(t+h) - g(t)}{h} = g(t)\lambda(e^{-u} - 1) + \frac{o(h)}{h}$$

Theorem: Definitions 1 and 2 are equivalent.

Letting $h \to 0$ gives

$$g'(t) = g(t)\lambda(e^{-u} - 1)$$

or, equivalently,

$$\frac{g'(t)}{g(t)} = \lambda(e^{-u} - 1)$$

Integrating, and using g(0) = 1, shows that

$$\log(g(t)) = \lambda t(e^{-u} - 1)$$

or

 $g(t) = e^{\lambda t (e^{-u} - 1)} \rightarrow \text{the Laplace transform of a Poisson r. v.}$ Since g(t) is also the Laplace transform of $\tilde{n}(t)$, $\tilde{n}(t)$ is a Poisson r. v.

The Inter-Arrival Time Distribution

Theorem. Poisson Processes have exponential inter-arrival time distribution, i.e., $\{\tilde{x}_n, n = 1, 2, ...\}$ are i.i.d and exponentially distributed with parameter λ (i.e., mean inter-arrival time $= 1/\lambda$).

Proof.

$$\begin{split} \tilde{x}_1 &: P(\tilde{x}_1 > t) = P(\tilde{n}(t) = 0) = \frac{e^{-\lambda t} (\lambda t)^0}{0!} = e^{-\lambda t} \\ &\therefore \tilde{x}_1 \sim e(t; \lambda) \\ \tilde{x}_2 &: P(\tilde{x}_2 > t | \tilde{x}_1 = s) \\ &= P\{0 \text{ arrivals in } (s, s + t] | \tilde{x}_1 = s\} \\ &= P\{0 \text{ arrivals in } (s, s + t]\} (\text{by independent increment}) \\ &= P\{0 \text{ arrivals in } (0, t]\} (\text{by stationary increment}) \\ &= e^{-\lambda t} \quad \therefore \tilde{x}_2 \text{ is independent of } \tilde{x}_1 \text{ and } \tilde{x}_2 \sim exp(t; \lambda). \end{split}$$

 \Rightarrow The procedure repeats for the rest of \tilde{x}_i 's.

The Arrival Time Distribution of the *n*th Event

Theorem. The arrival time of the n_{th} event, \tilde{S}_n (also called the waiting time until the n_{th} event), is *Erlang* distributed with parameter (n, λ) . **Proof.** <u>Method 1</u>:

$$\therefore \quad P[\tilde{S}_n \le t] = P[\tilde{n}(t) \ge n] = \sum_{k=n}^{\infty} \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$
$$\therefore \quad f_{\tilde{S}_n}(t) = \frac{\lambda e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!} \quad (\text{exercise})$$

 $\underline{Method 2}:$

$$f_{\tilde{S}_n}(t)dt = dF_{\tilde{S}_n}(t) = P[t < \tilde{S}_n < t + dt]$$

= $P\{n-1 \text{ arrivals in } (0,t] \text{ and } 1 \text{ arrival in } (t,t+dt)\} + o(dt)$
= $P[\tilde{n}(t) = n-1 \text{ and } 1 \text{ arrival in } (t,t+dt)] + o(dt)$
= $P[\tilde{n}(t) = n-1]P[1 \text{ arrival in } (t,t+dt)] + o(dt)(why?)$

The Arrival Time Distribution of the *n*th Event

$$= \frac{e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!} \lambda dt + o(dt)$$

$$\therefore \lim_{dt \to 0} \frac{f_{\tilde{S}_n}(t) dt}{dt} = f_{\tilde{S}_n}(t) = \frac{\lambda e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!}$$

Theorem. Given that $\tilde{n}(t) = n$, the *n* arrival times $\tilde{S}_1, \tilde{S}_2, \ldots, \tilde{S}_n$ have the same distribution as the order statistics corresponding to *n* i.i.d. uniformly distributed random variables from (0, t).

Order Statistics. Let $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n$ be *n* i.i.d. continuous random variables having common pdf *f*. Define $\tilde{x}_{(k)}$ as the k_{th} smallest value among all \tilde{x}_i 's, i.e., $\tilde{x}_{(1)} \leq \tilde{x}_{(2)} \leq \tilde{x}_{(3)} \leq \ldots \leq \tilde{x}_{(n)}$, then $\tilde{x}_{(1)}, \ldots, \tilde{x}_{(n)}$ are known as the "order statistics" corresponding to random variables $\tilde{x}_1, \ldots, \tilde{x}_n$. We have that the joint pdf of $\tilde{x}_{(1)}, \tilde{x}_{(2)}, \ldots, \tilde{x}_{(n)}$ is

$$f_{\tilde{x}_{(1)},\tilde{x}_{(2)},\ldots,\tilde{x}_{(n)}}(x_1,x_2,\ldots,x_n) = n!f(x_1)f(x_2)\ldots f(x_n),$$

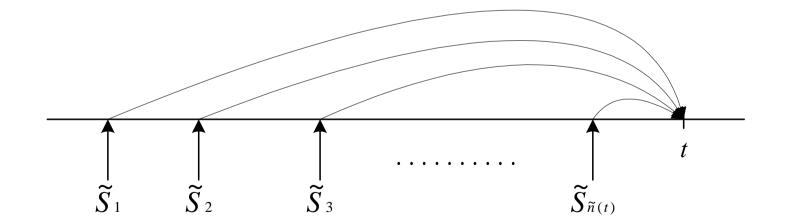
where $x_1 < x_2 < \ldots < x_n$ (check the textbook [Ross]).

Proof. Let $0 < t_1 < t_2 < \ldots < t_{n+1} = t$ and let h_i be small enough so that $t_i + h_i < t_{i+1}, i = 1, \dots, n.$ $\therefore \quad P[t_i < \tilde{S}_i < t_i + h_i, \ i = 1, \dots, n | \tilde{n}(t) = n]$ $P\left(\begin{array}{c} \text{exactly one arrival in each } [t_i, t_i + h_i] \\ i = 1, 2, \dots, n, \text{ and no arrival elsewhere in } [0, t] \end{array}\right)$ $P[\tilde{n}(t) = n]$ $= \frac{(e^{-\lambda h_1}\lambda h_1)(e^{-\lambda h_2}\lambda h_2)\dots(e^{-\lambda h_n}\lambda h_n)(e^{-\lambda(t-h_1-h_2\dots-h_n)})}{e^{-\lambda t}(\lambda t)^n/n!}$ $= \frac{n!(h_1h_2h_3\dots h_n)}{4^n}$ $\therefore \qquad \frac{P[t_i < \tilde{S}_i < t_i + h_i, \ i = 1, \dots, n | \tilde{n}(t) = n]}{h_1 h_2 \dots h_m} = \frac{n!}{t^n}$

Prof. Shun-Ren Yang, CS, NTHU 14

Taking
$$\lim_{h_i \to 0, i=1,...,n}$$
 (), then
 $f_{\tilde{S}_1, \tilde{S}_2,..., \tilde{S}_n | \tilde{n}(t)}(t_1, t_2, ..., t_n | n) = \frac{n!}{t^n}, \ 0 < t_1 < t_2 < ... < t_n.$

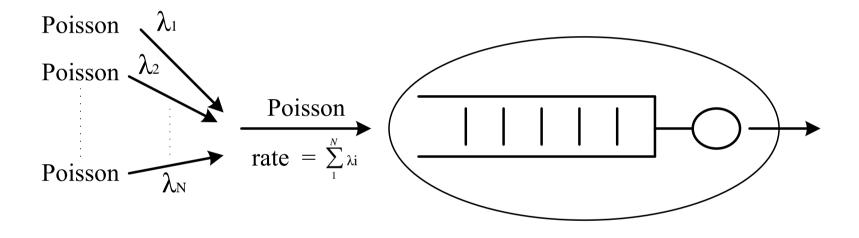
Example (see Ref [Ross], Ex. 2.3(A) p.68). Suppose that travellers arrive at a train depot in accordance with a Poisson process with rate λ . If the train departs at time t, what is the expected sum of the waiting times of travellers arriving in (0, t)? That is, $E[\sum_{i=1}^{\tilde{n}(t)} (t - \tilde{S}_i)] =$?



Answer.

Superposition of Independent Poisson Processes

Theorem. Superposition of independent Poisson Processes $(\lambda_i, i = 1, \dots, N)$, is also a Poisson process with rate $\sum_{i=1}^{N} \lambda_i$.



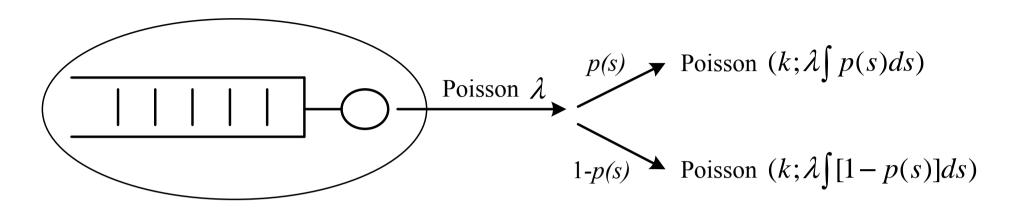
<u><Homework></u> Prove the theorem (note that a Poisson process must satisfy Definitions 1 or 2). Theorem.

- Given a Poisson process $N = \{\tilde{n}(t), t \ge 0\};$
- If $\tilde{n}_i(t)$ represents the number of type-*i* events that occur by time t, i = 1, 2;
- Arrival occurring at time s is a type-1 arrival with probability p(s), and type-2 arrival with probability 1 - p(s)

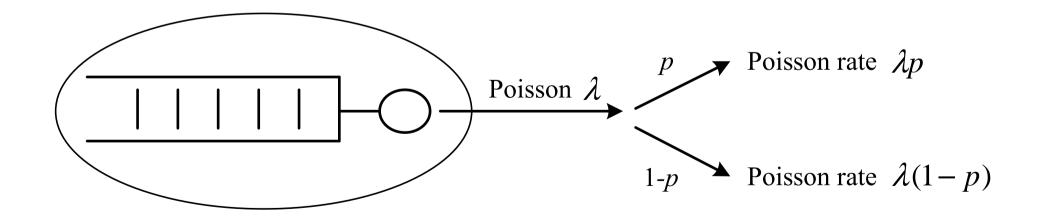
↓then

- \tilde{n}_1, \tilde{n}_2 are independent,
- $\tilde{n}_1(t) \sim P(k; \lambda tp)$, and

•
$$\tilde{n}_2(t) \sim P(k; \lambda t(1-p))$$
, where $p = \frac{1}{t} \int_0^t p(s) ds$



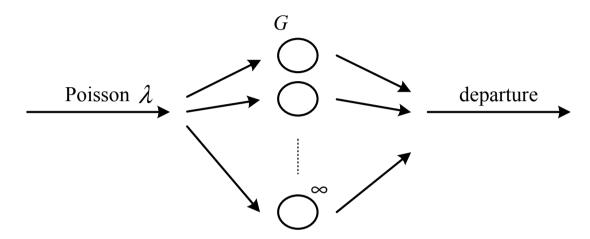
special case: If p(s) = p is constant, then



Prof. Shun-Ren Yang, CS, NTHU 20

Proof.

Example (An Infinite Server Queue, textbook [Ross]).



- $G_{\tilde{s}}(t) = P(\tilde{S} \le t)$, where \tilde{S} = service time
- $G_{\tilde{s}}(t)$ is independent of each other and of the arrival process
- $\tilde{n}_1(t)$: the number of customers which have left before t;
- *˜*₂(t): the number of customers which are still in the system at time t;
 - $\Rightarrow \tilde{n}_1(t) \sim ?$ and $\tilde{n}_2(t) \sim ?$

Answer.

Non-homogeneous Poisson Processes

- The counting process $N = \{\tilde{n}(t), t \ge 0\}$ is said to be a *non-stationary* or *non-homogeneous* Poisson Process with time-varying intensity function $\lambda(t), t \ge 0$, if:
 - 1. $\tilde{n}(0) = 0$
 - 2. N has independent increments

3.
$$P[\tilde{n}(t+h) - \tilde{n}(t) \ge 2] = o(h)$$

- 4. $P[\tilde{n}(t+h) \tilde{n}(t) = 1] = \lambda(t) \cdot h + o(h)$
- Define "integrated intensity function" $m(t) = \int_0^t \lambda(t') dt'$.

Theorem.

$$P[\tilde{n}(t+s) - \tilde{n}(t) = n] = \frac{e^{-[m(t+s) - m(t)]}[m(t+s) - m(t)]^n}{n!}$$

Proof. < <u>Homework</u> >.

Non-homogeneous Poisson Processes

- **Example.** The "output process" of the $M/G/\infty$ queue is a non-homogeneous Poisson process having intensity function $\lambda(t) = \lambda G(t)$, where G is the service distribution.
- **Hint.** Let D(s, s + r) denote the number of service completions in the interval (s, s + r] in (0, t]. If we can show that
 - D(s, s + r) follows a Poisson distribution with mean $\lambda \int_s^{s+r} G(y) dy$, and
 - the numbers of service completions in disjoint intervals are independent,

then we are finished by definition of a non-homogeneous Poisson process.

Non-homogeneous Poisson Processes

Answer.

- Because of
 - the independent increment assumption of the Poisson arrival process, and
 - the fact that there are always servers available for arrivals,
 - \Rightarrow the departure process has independent increments

Compound Poisson Processes

- A stochastic process $\{\tilde{x}(t), t \ge 0\}$ is said to be a compound Poisson process if
 - it can be represented as

$$\tilde{x}(t) = \sum_{i=1}^{\tilde{n}(t)} \tilde{y}_i, \quad t \ge 0$$

– $\{\tilde{n}(t), t \ge 0\}$ is a Poisson process

- $\{\tilde{y}_i, i \ge 1\}$ is a family of independent and identically distributed random variables which are also independent of $\{\tilde{n}(t), t \ge 0\}$
- The random variable $\tilde{x}(t)$ is said to be a compound Poisson random variable.
- $E[\tilde{x}(t)] =$ and $Var[\tilde{x}(t)] =$

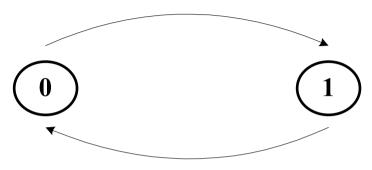
Compound Poisson Processes

- **Example** (Batch Arrival Process). Consider a parallel-processing system where each job arrival consists of a possibly random number of tasks. Then we can model the arrival process as a compound Poisson process, which is also called a *batch arrival process*.
- Let \tilde{y}_i be a random variable that denotes the number of tasks comprising a job. We derive the probability generating function $P_{\tilde{x}(t)}(z)$ as follows:

$$P_{\tilde{x}(t)}(z) = E\left[z^{\tilde{x}(t)}\right] = E\left[E\left[\right] \right] = E\left[E\left[z^{\tilde{y}_{1}+\dots+\tilde{y}_{\tilde{n}(t)}}|\tilde{n}(t)\right]\right]$$
$$= E\left[E\left[z^{\tilde{y}_{1}+\dots+\tilde{y}_{\tilde{n}(t)}}\right]\right] \text{ (by independence of } \tilde{n}(t) \text{ and } \{\tilde{y}_{i}\})$$
$$= E\left[E\left[z^{\tilde{y}_{1}}\right]\dots E\left[z^{\tilde{y}_{\tilde{n}(t)}}\right]\right] \text{ (by independence of } \tilde{y}_{1},\dots,\tilde{y}_{\tilde{n}(t)})$$
$$= E\left[\begin{array}{c} \end{array}\right] = P_{\tilde{n}(t)}\left(P_{\tilde{y}}(z)\right)$$

Modulated Poisson Processes

• Assume that there are two states, 0 and 1, for a "modulating process."



- When the state of the modulating process equals 0 then the arrive rate of customers is given by λ_0 , and when it equals 1 then the arrival rate is λ_1 .
- The residence time in a particular modulating state is exponentially distributed with parameter μ and, after expiration of this time, the modulating process changes state.
- The initial state of the modulating process is randomly selected and is equally likely to be state 0 or 1.

Modulated Poisson Processes

- For a given period of time (0, t), let Υ be a random variable that indicates the total amount of time that the modulating process has been in state 0. Let x̃(t) be the number of arrivals in (0, t).
- Then, given Υ , the value of $\tilde{x}(t)$ is distributed as a non-homogeneous Poisson process and thus

$$P[\tilde{x}(t) = n | \Upsilon = \tau] =$$

• As $\mu \to 0$, the probability that the modulating process makes no transitions within t seconds converges to 1, and we expect for this case that

$$P[\tilde{x}(t) = n] =$$

Modulated Poisson Processes

• As $\mu \to \infty$, then the modulating process makes an infinite number of transitions within t seconds, and we expect for this case that

$$P[\tilde{x}(t) = n] =$$
, where $\beta = \frac{\lambda_0 + \lambda_1}{2}$

- **Example** (Modeling Voice).
 - A basic feature of speech is that it comprises an alternation of silent periods and non-silent periods.
 - The arrival rate of packets during a talk spurt period is Poisson with rate λ_1 and silent periods produce a Poisson rate with $\lambda_0 \approx 0$.
 - The duration of times for talk and silent periods are exponentially distributed with parameters μ_1 and μ_0 , respectively.
 - \Rightarrow The model of the arrival stream of packets is given by a modulated Poisson process.

• PASTA says: as $t \to \infty$

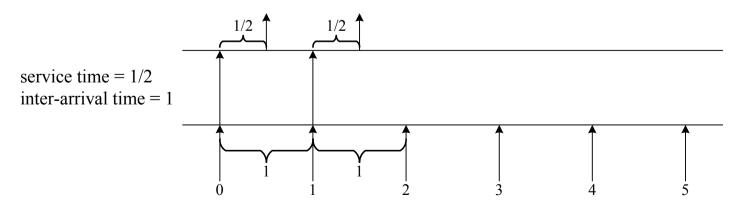
Fraction of arrivals who see the system in a given state

upon arrival (arrival average)

- = Fraction of time the system is in a given state (time average)
- = The system is in the given state at any random time

after being steady

• Counter-example (textbook [Kao]: Example 2.7.1)



Prof. Shun-Ren Yang, CS, NTHU 33

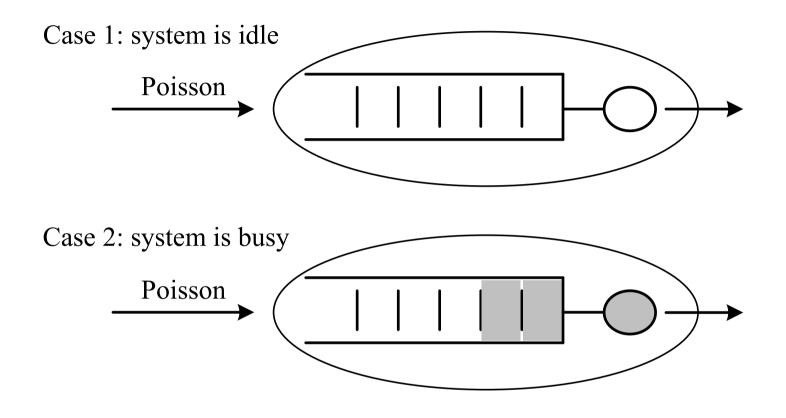
- Arrival average that an arrival will see an idle system =
- Time average of system being idle =
- Mathematically,
 - Let $X = \{\tilde{x}(t), t \ge 0\}$ be a stochastic process with state space S, and $B \subset S$
 - Define an indicator random variable

$$\widetilde{u}(t) = \begin{cases}
1, & \text{if } \widetilde{x}(t) \in B \\
0, & \text{otherwise}
\end{cases}$$

– Let $N = \{\tilde{n}(t), t \ge 0\}$ be a Poisson process with rate λ denoting the arrival process

then,

- Condition For PASTA to hold, we need the *lack of anticipation* assumption (LAA): for each $t \ge 0$,
 - the arrival process $\{\tilde{n}(t+u) \tilde{n}(t), u \ge 0\}$ is independent of $\{\tilde{x}(s), 0 \le s \le t\}$ and $\{\tilde{n}(s), 0 \le s \le t\}$.
- Application:
 - To find the waiting time distribution of any arriving customer
 - Given: P[system is idle] = 1ρ ; P[system is busy] = ρ



 $\Rightarrow P(\tilde{w} \le t) = P(\tilde{w} \le t | \text{idle}) \cdot P(\text{idle upon arrival})$ $+ P(\tilde{w} \le t | \text{busy}) \cdot P(\text{busy upon arrival})$

Prof. Shun-Ren Yang, CS, NTHU 36

Memoryless Property of the Exponential Distribution

• A random variable \tilde{x} is said to be without memory, or *memoryless*, if

$$P[\tilde{x} > s + t | \tilde{x} > t] = P[\tilde{x} > s] \quad \text{for all } s, t \ge 0 \tag{3}$$

• The condition in Equation (3) is equivalent to

$$\frac{P[\tilde{x} > s + t, \tilde{x} > t]}{P[\tilde{x} > t]} = P[\tilde{x} > s]$$

or

$$P[\tilde{x} > s+t] = P[\tilde{x} > s]P[\tilde{x} > t]$$

$$\tag{4}$$

- Since Equation (4) is satisfied when \tilde{x} is exponentially distributed (for $e^{-\lambda(s+t)} = e^{-\lambda s}e^{-\lambda t}$), it follows that exponential random variable are memoryless.
- Not only is the exponential distribution "memoryless," but it is the unique continuous distribution possessing this property.

Comparison of Two Exponential Random Variables

Suppose that \tilde{x}_1 and \tilde{x}_2 are independent exponential random variables with respective means $1/\lambda_1$ and $1/\lambda_2$. What is $P[\tilde{x}_1 < \tilde{x}_2]$?

$$P[\tilde{x}_{1} < \tilde{x}_{2}] = \int_{0}^{\infty} P[\tilde{x}_{1} < \tilde{x}_{2} | \tilde{x}_{1} = x] \lambda_{1} e^{-\lambda_{1} x} dx$$

$$= \int_{0}^{\infty} P[x < \tilde{x}_{2}] \lambda_{1} e^{-\lambda_{1} x} dx$$

$$= \int_{0}^{\infty} e^{-\lambda_{2} x} \lambda_{1} e^{-\lambda_{1} x} dx$$

$$= \int_{0}^{\infty} \lambda_{1} e^{-(\lambda_{1} + \lambda_{2}) x} dx$$

$$= \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}}$$

Minimum of Exponential Random Variables

Suppose that $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n$ are independent exponential random variables, with \tilde{x}_i having rate $\mu_i, i = 1, \dots, n$. It turns out that the smallest of the \tilde{x}_i is exponential with a rate equal to the sum of the μ_i .

$$P[\min(\tilde{x}_1, \tilde{x}_2, \cdots, \tilde{x}_n) > x] = P[\tilde{x}_i > x \text{ for each } i = 1, \cdots, n]$$
$$= \prod_{i=1}^n P[\tilde{x}_i > x] \quad \text{(by independence)}$$
$$= \prod_{i=1}^n e^{-\mu_i x}$$
$$= exp\left\{-\left(\sum_{i=1}^n \mu_i\right) x\right\}$$

How about $\max(\tilde{x}_1, \tilde{x}_2, \cdots, \tilde{x}_n)$? (exercise)