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Introduction
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Introduction

Arrival Process:

Renewal Process:

Poisson Process:

X ={%;,1=1,2,...}; x;’s can be any
S ={S;,i=0,1,2,...};5;’s can be any
N = {n(t), t > 0}; — called arrival process

X =4{%;,i1=1,2,...}; x;’s are i.i.d.
S = {gz, i =0,1,2,...}; S.’s are general distributed
N ={n(t), t > 0}; — called renewal process

X ={xz;,1=1,2,...}; x;’s are iid exponential distributed
S = {g,“ i=0,1,2,...}; S;’s are Erlang distributed
N ={n(t), t > 0}; — called Poisson process

Prof. Shun-Ren Yang, CS, NTHU 3



Counting Processes

e A stochastic process N = {n(t), t > 0} is said to be a counting process
if n(t) represents the total number of “events” that have occurred up

to time ¢.
e From the definition we see that for a counting process n(t) must
satisty:
1. n(t) > 0.
2. n(t) is integer valued.
3. If s <t, then n(s) < n(t).

4. For s < t, n(t) — n(s) equals the number of events that have

occurred in the interval (s, t].
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Definition 1: Poisson Processes

The counting process N = {n(t), t > 0} is a Poisson process with rate A

(A > 0), if:
1. n(0) =0

2. Independent increments | relaxed = Modulated Poisson Process

Plia(t) — ia(s) = k1 |a(r) = ko, 7 < s < 1] = P[a(t) — 7(s) = ki]

3. Stationary increments

relaxed = Non-homogeneous Poisson Process

Plia(t + s) — a(t) = k] = P[a(l + s) — a(l) = k]

4. Single arrival | relaxed = Compound Poisson Process

| = Ah+o(h)

1
Pla(h) > 2] = o(h)
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Definition 2: Poisson Processes

The counting process N = {n(t), t > 0} is a Poisson process with rate A
(A > 0), if:

1. n(0) =0
2. Independent increments

3. The number of events in any interval of length ¢ is Poisson distributed
with mean A\t. That is, for all s,¢ > 0

AE)"
P[ﬁ(tJrs)—ﬁ(s):n]:e_)‘t( ') , n=0,1,...
n!
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Theorem: Definitions 1 and 2 are equivalent.

Proof. We show that Definition 1 implies Definition 2, and leave it to the
reader to prove the reverse. To start, fix v > 0 and let

g(t) = Ele™"]
We derive a differential equation for g(t) as follows:

g(t—i—h) _ E[e—uﬁ(t—l—h)]
— B {emit)mulneen =)

= F {e_“ﬁ(t)} E {e_u[ﬁ(Hh)_ﬁ(m} by independent increments

_ g(t)E [e—uﬁ(h)} by stationary increments (1)
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Theorem: Definitions 1 and 2 are equivalent.

~

Conditioning on whether n(¢) =0 or n(t) = 1 or n(t) > 2 yields
E e = 1 - \h+o(h) + e "(\h+o(h)) + o(h)
= 1—Ah+e “Ah+o(h)
From (1) and (2), we obtain that
g(t+h)=gt)(1 —Xh+e “Ah)+ o(h)

implying that

gt +h) —g(t)
h

=g(t) (e " —1)+ @
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Theorem: Definitions 1 and 2 are equivalent.

Letting h — 0 gives

or, equivalently,

Integrating, and using ¢g(0) = 1, shows that

log(g(¢)) = At(e™" — 1)

g(t) = M=) the Laplace transform of a Poisson r. v.

~

Since g(t) is also the Laplace transform of n(t), n(t) is a Poisson r. v.
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The Inter-Arrival Time Distribution

Theorem. Poisson Processes have exponential inter-arrival time
distribution, i.e., {Z,,n = 1,2,...} are i.i.d and exponentially
distributed with parameter A (i.e., mean inter-arrival time = 1/\).

Proof.

B P > 1) = P((t) = 0) = © O _

0!
ff?l ~ e(t; )\)
xro P(fﬁg > t‘fﬁl = S)

= P{0 arrivals in (s, s + t||Z1 = s}
= P{0 arrivals in (s, s + t]}(by independent increment)
= P{0 arrivals in (0, t]}(by stationary increment)

— e % is independent of #; and Fy ~ exp(t; ).

= The procedure repeats for the rest of ;’s.
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The Arrival Time Distribution of the  nth Event

~

Theorem. The arrival time of the nyy, event, S, (also called the waiting
time until the ny, event), is Erlang distributed with parameter (n, ).

Proof. Method1 :

i 00 At \p\K
P[S, <t]=Pla(t) >n] =Y _ k('At)
k=n )
6—)\75 n—1
fg (1) = 4 (n (_)\i))! (exercise)

Method 2 :

fo ()dt = dFg (t) = P[t < Sp < t+di]
= P{n — 1 arrivals in (0,¢] and 1 arrival in (¢, + dt)} + o(dt)
= P[n(t) =n —1 and 1 arrival in (¢,t 4 dt)| + o(dt)
= P[n(t) =n — 1]P[1 arrival in (¢,t + dt)] + o(dt)(why?)
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The Arrival Time Distribution of the nth Event

6‘;: (iti;_l Adt + o(dt)
o fg dt o Xe M ()
' dItH—I}O dt f5,(8) = (n —1)!
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Conditional Distribution of the Arrival Times

Theorem. Given that n(t) = n, the n arrival times S1,S5,.... S, have
the same distribution as the order statistics corresponding to n i.i.d.
uniformly distributed random variables from (0, ).

Order Statistics. Let x1,29,...,2, be n i.i.d. continuous random
variables having common pdf f. Define Z () as the ki, smallest value
among all x;’s, i.e., 515(1) < f(Q) < f(3) <...< f(n), then Zi(l), e 757(71)
are known as the “order statistics” corresponding to random variables
T1,...,Tn. We have that the joint pdf of z (1), Z(9),...,Z(p) 18

J30),8 @iy (X1, 25 -, Tn) = 0l f(21) f(@2) . .. f(2n),

where r1 < x92 < ... < z, (check the textbook [Ross]).

Prof. Shun-Ren Yang, CS, NTHU 13




Conditional Distribution of the Arrival Times

Proof. Let 0 <t <ty <...<typi1 =t and let h; be small enough so that
ti+h; <tix1,1=1,...,n.

P[ti<§z‘<ti—|—hi, izl,...,n\ﬁ(t):n]

b exactly one arrival in each [t;,t; + h;]
i=1,2,...,n, and no arrival elsewhere in [0, ¢]
N Pn(t) = n]

(G—Ahl )\hl)(e_AhQ)\hQ) o (e—Ahn)\hn)(e—A(t—hl—hg...—hn))
e~ M (At)" /n!

n!(hlhghg. . hn)
tn
Plt; < S; <ti+h;, i=1,...,nnt)=n] n!
hihs ... h, tm
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Conditional Distribution of the Arrival Times

Taking lim ), then

h¢—>0,i:1,...,n

n!
f§1,§2,...,§nm(t)(t17t2v oy tnln) = n’ 0<ty <tg<...<1y.
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Conditional Distribution of the Arrival Times

Example (see Ref [Ross|, Ex. 2.3(A) p.68). Suppose that travellers arrive
at a train depot in accordance with a Poisson process with rate \. If
the train departs at time ¢, what is the expected sum of the
waiting times of travellers arriving in (0,¢)? That is, E[Z?:(tl) (t—5;)] =2
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Conditional Distribution of the Arrival Times

Answer.
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Superposition of Independent Poisson Processes

Theorem. Superposition of independent Poisson Processes
N

(Ni,2=1,...,N), is also a Poisson process with rate Z A
1

Poisson A1
Poisson 7\
| \ Poisson
: : )

Poiéson fy rate = le}”i

<Homework> Prove the theorem (note that a Poisson process must

satisfy Definitions 1 or 2).

Prof. Shun-Ren Yang, CS, NTHU
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Decomposition of a Poisson Process

Theorem.
e Given a Poisson process N = {n(t),t > 0};
o If n;(¢) represents the number of type-i events that occur by time
t,1=1,2;
e Arrival occurring at time s is a type-1 arrival with probability p(s),
and type-2 arrival with probability 1 — p(s)

{then

e 11,n9 are independent,
e ny(t) ~ P(k;\tp), and

1 rt
o n5(t) ~ P(k;M(1 —p)), wherep = 2/0 p(s)ds
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Decomposition of a Poisson Process

p(s) Poisson (k;/]J. p(s)ds)

Poisson A

>

1-19}‘ Poisson (k;/]_[[l— p(s)]ds)

special case: If p(s) = p is constant, then

p Poisson rate Ap
Poisson A /
>
1\‘ Poisson rate A(1— P)

P
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Decomposition of a Poisson Process

Proof.
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Decomposition of a Poisson Process

Example (An Infinite Server Queue textbook [Ross]).

P(S < t), where S = service time

Poisson /1 departure

>

[
cm

Gs(t)
e G;(t) is independent of each other and of the arrival process

ny(t):
no(t):
time ¢;

= ﬁl(t) ~7 and ﬁg(t) ~"7

the number of customers which have left before t;

the number of customers which are still in the system at
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Decomposition of a Poisson Process

Answer.
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Non-homogeneous Poisson Processes

e The counting process N = {n(t),t > 0} is said to be a non-stationary

or non-homogeneous Poisson Process with time-varying intensity

function A(¢),t > 0, if:
1. n(0) =0

. N has independent increments

2
3. P[a(t + h) — a(t) > 2] = o(h)
4. P[a(t +h) —a(t) = 1] = A(t)

-h+o(h)

!
e Define “integrated intensity function” m(t) = / (") dt'.
0

Theorem.
Pln(t+s) —n(t) =n] =

Proof. < Homework >.

Prof. Shun-Ren Yang, CS, NTHU
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Non-homogeneous Poisson Processes

Example. The “output process” of the M/G /oo queue is a
non-homogeneous Poisson process having intensity function
A(t) = MG(t), where (G is the service distribution.

Hint. Let D(s,s + r) denote the number of service completions in the
interval (s,s + r| in (0,t]. If we can show that

e D(s,s+7) follows a Poisson distribution with mean A [7™" G(y)dy,
and

e the numbers of service completions in disjoint intervals are

independent,

then we are finished by definition of a non-homogeneous Poisson

process.
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Non-homogeneous Poisson Processes

Answer.
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Non-homogeneous Poisson Processes

e Because of
— the independent increment assumption of the Poisson arrival
process, and

— the fact that there are always servers available for arrivals,

= the departure process has independent increments

Prof. Shun-Ren Yang, CS, NTHU
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Compound Poisson Processes

e A stochastic process {x(t),t > 0} is said to be a compound Poisson
process if

— it can be represented as

g
/N
[
N—r

z(t)=>» v, t>0

<
|
[EY

— {n(t),t > 0} is a Poisson process
— {9;,1 > 1} is a family of independent and identically distributed

random variables which are also independent of {n(t),t > 0}

e The random variable Z(t) is said to be a compound Poisson random
variable.

o F|Z(t)] = and Var|z(t)] =
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Compound Poisson Processes

e Example (Batch Arrival Process). Consider a parallel-processing
system where each job arrival consists of a possibly random number
of tasks. Then we can model the arrival process as a compound
Poisson process, which is also called a batch arrival process.

e Let y; be a random variable that denotes the number of tasks
comprising a job. We derive the probability generating function
Py (2) as follows:

Pj;(t)(z) — B :Ziz(t)} K [E[ H — E {E {Zﬂ1+-..+@ﬁ(t)|ﬁ(t)ﬂ

_ rlE 'Z§1+---+%(t)ﬂ (by independence of n(t) and {g;})

— rlE _2@1} ) [z%(t)ﬂ (by independence of §1,- -, Ui(¢))
= F| | = Prg) (Py(2))
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Modulated Poisson Processes

e Assume that there are two states, 0 and 1, for a “modulating process.”

T

O O

\/

e When the state of the modulating process equals 0 then the arrive rate
of customers is given by A\g, and when it equals 1 then the arrival rate
1S )\1.

e The residence time in a particular modulating state is exponentially
distributed with parameter i and, after expiration of this time, the
modulating process changes state.

e The initial state of the modulating process is randomly selected and is
equally likely to be state O or 1.
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Modulated Poisson Processes

e For a given period of time (0,%), let T be a random variable that
indicates the total amount of time that the modulating process has
been in state 0. Let Z(¢) be the number of arrivals in (0,1).

e Then, given T, the value of Z(¢) is distributed as a non-homogeneous
Poisson process and thus

Pli(t) = n|T = 7] =

e As i — 0, the probability that the modulating process makes no
transitions within t seconds converges to 1, and we expect for this case
that

Pli(t) = n] =
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Modulated Poisson Processes

e As i — 00, then the modulating process makes an infinite number of
transitions within ¢ seconds, and we expect for this case that

Ao + A
2

Plz(t) =n| = ., where 3 =

e Example (Modeling Voice).

— A basic feature of speech is that it comprises an alternation of
silent periods and non-silent periods.

— The arrival rate of packets during a talk spurt period is Poisson
with rate A\; and silent periods produce a Poisson rate with Ag ~ 0.

— The duration of times for talk and silent periods are exponentially
distributed with parameters 111 and g, respectively.

= The model of the arrival stream of packets is given by a modulated
Poisson process.
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Poisson Arrivals See Time Averages (PASTA)

e PASTA says: ast — o0

Fraction of arrivals who see the system in a given state

upon arrival (arrival average)

Fraction of time the system is in a given state (time average)
= The system is in the given state at any random time

after being steady

e Counter-example (textbook [Kao|: Example 2.7.1)

172 172
A A

A 1
\ A
1 1
2 3 4 5

service time = 1/2
inter-arrival time = 1
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Poisson Arrivals See Time Averages (PASTA)

— Arrival average that an arrival will see an idle system =

— Time average of system being idle =

e Mathematically,

— Let X = {Z(¢),t > 0} be a stochastic process with state space S,
and B C S

— Define an indicator random variable

i) - { 1, if#(t)e B

0, otherwise

— Let N ={n(t),t > 0} be a Poisson process with rate A denoting the

arrival process
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Poisson Arrivals See Time Averages (PASTA)

then,

e Condition — For PASTA to hold, we need the lack of anticipation
assumption (LAA): for each t > 0,

— the arrival process {n(t + uv) — n(t),u > 0} is independent of
{z(s),0 < s <t} and {n(s),0 <s < t}.

e Application:
— To find the waiting time distribution of any arriving customer

— Given: P[system is idle] = 1 — p; P|system is busy] = p

Prof. Shun-Ren Yang, CS, NTHU
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Poisson Arrivals See Time Averages (PASTA)

Case 1: system is idle

Poisson NN E_'
o

Case 2: system 1s busy

>

Poisson | | | |

= P(w

VAN
|
T
£,

idle) - P(idle upon arrival)
Ibusy) - P(busy upon arrival)
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Memoryless Property of the Exponential Distribution

e A random variable 7 is said to be without memory, or memoryless, if
Pz > s+ t|x >t]=P[x >s] forall s,t >0 (3)

e The condition in Equation (3) is equivalent to

Plz>s+1t,z >t
Pz > ]

= Pz > s

Pli > s+t = Pli > s|P|F > t] (4)

e Since Equation (4) is satisfied when ¥ is exponentially distributed (for
e~ Mstt) — e e M) it follows that exponential random variable are
memoryless.

e Not only is the exponential distribution “memoryless,” but it is the
unique continuous distribution possessing this property.
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Comparison of Two Exponential Random Variables

Suppose that ;1 and x9 are independent exponential random variables
with respective means 1/A; and 1/A3. What is P|T; < Z2]?

P[fﬁl < 532] = /() P[fil < 52|§31 = x]Ale_Alxdx

/ Plx < Zo)A\e M%dx
0
= / G_AQx)\le_)\lxdlU

0

= /OO A~ MtA)z gy
0

A1
A1+ A9

Prof. Shun-Ren Yang, CS, NTHU
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Minimum of Exponential Random Variables

Suppose that x1, 9o, -, I, are independent exponential random variables,
with x; having rate p;, 2 = 1,---,n. It turns out that the smallest of the z;
is exponential with a rate equal to the sum of the u;.

Plmin(x1,Ts, -+, %y) > x| = Plz; >x foreachi=1,--- n)]

= || Pz > 2] (by independence)
i=1

n
- e
1=1

— e~ (S} o]

How about max(x1, 2, --,T,)? (exercise)
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