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Continuous-Time Markov Chains

• Consider a continuous-time stochastic process {X(t), t ≥ 0} taking on
values in the set of nonnegative integers. We say that the process
{X(t), t ≥ 0} is a continuous-time Markov chain if for all s, t ≥ 0, and
nonnegative integers i, j, x(u), 0 ≤ u ≤ s,

P{X(t + s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s}
= P{X(t + s) = j|X(s) = i}.

• In other words, a continuous-time Markov chain is a stochastic process
having the Markovian property that the conditional distribution of the
future state at time t + s, given the present state at s and all past
states depends only on the present state and is independent of the
past.

• Suppose that a continuous-time Markov chain enters state i at some
time, say time 0, and suppose that the process does not leave state i

Prof. Shun-Ren Yang, CS, NTHU 1



Continuous-Time Markov Chains

(that is, a transition does not occur) during the next s time units.
What is the probability that the process will not leave state i during
the following t time units?

• Note that as the process is in state i at time s, it follows, by the
Markovian property, that the probability it remains in that state
during the interval [s, s + t] is just the (unconditional) probability that
it stays in state i for at least t time units. That is, if we let τi denote
the amount of time that the process stays in state i before making a
transition into a different state, then

P{τi > s + t|τi > s} = P{τi > t}
for all s, t ≥ 0. Hence, the random variable τi is memoryless and must
thus be exponentially distributed.
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Continuous-Time Markov Chains

• In fact, the above gives us a way of constructing a continuous-time
Markov chain. Namely, it is a stochastic process having the properties
that each time it enters state i :

1. the amount of time it spends in that state before making a
transition into a different state is exponentially distributed with
rate, say, vi; and

2. when the process leaves state i, it will next enter state j with some
probability, call it Pij , where

∑
j �=i Pij = 1.

• A state i for which vi = ∞ is called an instantaneous state since when
entered it is instantaneously left. If vi = 0, then state i is called
absorbing since once entered it is never left.

• Hence, a continuous-time Markov chain is a stochastic process that
moves from state to state in accordance with a (discrete-time) Markov
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Continuous-Time Markov Chains

chain, but is such that the amount of time it spends in each state,
before proceeding to the next state, is exponentially distributed.

• In addition, the amount of time the process spends in state i, and the
next state visited, must be independent random variables. For if the
next state visited were dependent on τi, then information as to how
long the process has already been in state i would be relevant to the
prediction of the next state — and this would contradict the
Markovian assumption.

• Let qij be defined by

qij = viPij , all i �= j.

Since vi is the rate at which the process leaves state i and Pij is the
probability that it then goes to j, it follows that qij is the rate when in
state i that the process makes a transition into state j; and in fact we
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Continuous-Time Markov Chains

call qij the transition rate from i to j.

• Let us denote by Pij(t) the probability that a Markov chain, presently
in state i, will be in state j after an additional time t. That is,

Pij(t) = P{X(t + s) = j|X(s) = i}.
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Birth and Death Processes

• A continuous-time Markov chain with states 0, 1, . . . for which qij = 0
whenever |i − j| > 1 is called a birth and death process.

• Thus a birth and death process is a continuous-time Markov chain
with states 0, 1, . . . for which transitions from state i can only go to
either state i − 1 or state i + 1. The state of the process is usually
thought of as representing the size of some population, and when the
state increases by 1 we say that a birth occurs, and when it decreases
by 1 we say that a death occurs.

• Let λi and μi be given by

λi = qi,i+1,

μi = qi,i−1.

The values {λi, i ≥ 0} and {μi, i ≥ 1} are called respectively the birth
rates and the death rates.
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Birth and Death Processes

• Since
∑

j qij = vi, we see that

vi = λi + μi,

Pi,i+1 =
λi

λi + μi
= 1 − Pi,i−1.

• Hence, we can think of a birth and death process by supposing that
whenever there are i people in the system the time until the next birth
is exponential with rate λi and is independent of the time until the
next death, which is exponential with rate μi.
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An Example: The M/M/s Queue

• Suppose that customers arrive at an s-server service station in
accordance with a Poisson process having rate λ.

• Each customer, upon arrival, goes directly into service if any of the
servers are free, and if not, then the customer joins the queue (that is,
he waits in line).

• When a server finishes serving a customer, the customer leaves the
system, and the next customer in line, if there are any waiting, enters
the service. The successive service times are assumed to be
independent exponential random variables having mean 1/μ.

• If we let X(t) denote the number in the system at time t, then
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An Example: The M/M/s Queue

{X(t), t ≥ 0} is a birth and death process with

μn =

⎧⎨
⎩

nμ 1 ≤ n ≤ s

sμ n > s,

λn = λ, n ≥ 0.
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The Kolmogorov Differential Equations

• Recall that
Pij(t) = P{X(t + s) = j|X(s) = i}

represents the probability that a process presently in state i will be in
state j a time t later.

• By exploiting the Markovian property, we will derive two sets of
differential equations for Pij(t), which may sometimes be explicitly
solved. However, before doing so we need the following lemmas.

• Lemma 1.

1. lim
t→0

1 − Pii(t)
t

= vi.

2. lim
t→0

Pij(t)
t

= qij , i �= j.
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The Kolmogorov Differential Equations

• Lemma 2. For all s, t,

Pij(t + s) =
∞∑

k=0

Pik(t)Pkj(s).

• From Lemma 2 we obtain

Pij(t + h) =
∑
k

Pik(h)Pkj(t),

or, equivalently,

Pij(t + h) − Pij(t) =
∑
k �=i

Pik(h)Pkj(t) − [1 − Pii(h)]Pij(t).

Dividing by h and then taking the limit as h → 0 yields, upon
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The Kolmogorov Differential Equations

application of Lemma 1,

lim
h→0

Pij(t + h) − Pij(t)
h

= lim
h→0

∑
k �=i

Pik(h)
h

Pkj(t) − viPij(t).

• Assuming that we can interchange the limit and summation on the
right-hand side of the above equation, we thus obtain, again using
Lemma 1, the following.

• Theorem. (Kolmogorov’s Backward Equations)

For all i, j, and t ≥ 0,

P ′
ij(t) =

∑
k �=i

qikPkj(t) − viPij(t).
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The Kolmogorov Differential Equations

• The set of differential equations for Pij(t) given in the above Theorem
are known as the Kolmogorov backward equations.

• They are called the backward equations because in computing the
probability distribution of the state at time t + h we conditioned on
the state (all the way) back at time h. That is, we started our
calculation with

Pij(t + h) =
∑
k

P{X(t + h) = j|X(0) = i, X(h) = k}

×P{X(h) = k|X(0) = i}
=

∑
k

Pkj(t)Pik(h).
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The Kolmogorov Differential Equations

• We may derive another set of equations, known as the Kolmogorov’s
forward equations, by now conditioning on the state at time t. This
yields

Pij(t + h) =
∑
k

Pik(t)Pkj(h)

or

Pij(t + h) − Pij(t) =
∑
k

Pik(t)Pkj(h) − Pij(t)

=
∑
k �=j

Pik(t)Pkj(h) − [1 − Pjj(h)]Pij(t).

Therefore,

lim
h→0

Pij(t + h) − Pij(t)
h

= lim
h→0

{
∑
k �=j

Pik(t)
Pkj(h)

h
− 1 − Pjj(h)

h
Pij(t)}.
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The Kolmogorov Differential Equations

• Assuming that we can interchange limit with summation, we obtain by
Lemma 1 that

P ′
ij(t) =

∑
k �=j

qkjPik(t) − vjPij(t).

• Theorem. (Kolmogorov’s Forward Equations)

Under suitable regularity conditions,

P ′
ij(t) =

∑
k �=j

qkjPik(t) − vjPij(t).
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The Kolmogorov Differential Equations

Example. The Two-State Chain. Consider a two-state
continuous-time Markov chain that spends an exponential time with
rate λ in state 0 before going to state 1, where it spends an
exponential time with rate μ before returning to state 0. The forward
equations yield

P ′
00(t) = μP01(t) − λP00(t)

= −(λ + μ)P00(t) + μ,

where the last equation follows from P01(t) = 1 − P00(t). Hence,

e(λ+μ)t[P ′
00(t) + (λ + μ)P00(t)] = μe(λ+μ)t

or
d

dt
[e(λ+μ)tP00(t)] = μe(λ+μ)t.
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The Kolmogorov Differential Equations

Thus,
e(λ+μ)tP00(t) =

μ

λ + μ
e(λ+μ)t + c.

Since P00(0) = 1, we see that c = λ/(λ + μ), and thus

P00(t) =
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t.

Similarly (or by symmetry),

P11(t) =
λ

λ + μ
+

μ

λ + μ
e−(λ+μ)t.

Prof. Shun-Ren Yang, CS, NTHU 17



Limiting Probabilities

• Since a continuous-time Markov chain is a semi-Markov process with

Fij(t) = 1 − e−vit

it follows that if the discrete-time Markov chain with transition
probabilities Pij is irreducible and positive recurrent, then the limiting
probabilities Pj = limt→∞ Pij(t) are given by

Pj =
πj/vj∑
i

πi/vi

where the πj are the unique nonnegative solution of

πj =
∑

i

πiPij ,

∑
i

πi = 1.
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Limiting Probabilities

• From the above two equations, we see that the Pj are the unique
nonnegative solution of

vjPj =
∑

i

viPiPij ,

∑
j

Pj = 1,

or, equivalently, using qij = viPij ,

vjPj =
∑

i

Piqij ,

∑
j

Pj = 1. (1)
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Limiting Probabilities – Remarks

1. It follows from the results for semi-Markov processes that Pj also
equals the long-run proportion of time the process is in state j.

2. If the initial state is chosen according to the limiting probabilities
{Pj}, then the resultant process will be stationary. That is,

∑
i

PiPij(t) = Pj for all t.

The above is proven as follows:
∑

i

Pij(t)Pi =
∑

i

Pij(t) lim
s→∞Pki(s)

= lim
s→∞

∑
i

Pij(t)Pki(s)

= lim
s→∞Pkj(t + s)

= Pj .
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Limiting Probabilities – Remarks

3. Another way of obtaining Equations (??) is by way of the forward
equations

P ′
ij(t) =

∑
k �=j

qkjPik(t) − vjPij(t).

If we assume that the limiting probabilities Pj = limt→∞ Pij(t) exist,
then P ′

ij(t) would necessarily converge to 0 as t → ∞. (Why?) Hence,
assuming that we can interchange limit and summation in the above,
we obtain upon letting t → ∞,

0 =
∑
k �=j

Pkqkj − vjPj .

It is worth noting that the above is a more formal version of the
following heuristic argument — which yields an equation for Pj , the
probability of being in state j at t = ∞ — by conditioning on the
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Limiting Probabilities – Remarks

state h units prior in time:

Pj =
∑

i

Pij(h)Pi

=
∑
i�=j

(qijh + o(h))Pi + (1 − vjh + o(h))Pj

or
0 =

∑
i�=j

Piqij − vjPj +
o(h)
h

,

and the result follows by letting h → 0.

4. Equation (??) has a nice interpretation, which is as follows:

• In any interval (0, t), the number of transitions into state j must
equal to within 1 the number of transitions out of state j. (Why?)
Hence, in the long run the rate at which transitions into state j

occur must equal the rate at which transitions out of state j occur.
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Limiting Probabilities – Remarks

• Now when the process is in state j it leaves at rate vj , and, since Pj

is the proportion of time it is in state j, it thus follows that

vjPj = rate at which the process leaves state j.

• Similarly, when the process is in state i it departs to j at rate qij ,
and, since Pi is the proportion of time in state i, we see that the
rate at which transitions from i to j occur is equal to qijPi. Hence,

∑
i

Piqij = rate at which the process enters state j.

• Therefore, (??) is just a statement of the equality of the rate at
which the process enters and leaves state j. Because it balances
(that is, equates) these rates, Equations (??) are sometimes
referred to as balance equations.
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Limiting Probabilities – Remarks

5. When the continuous-time Markov chain is irreducible and Pj > 0 for
all j, we say that the chain is ergodic.
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Limiting Probabilities – An Example

• Let us now determine the limiting probabilities for a birth and death
process.

• From Equations (??), or, equivalently, by equating the rate at which
the process leaves a state with the rate at which it enters that state,
we obtain

State Rate Process Leaves Rate Process Enters

0 λ0P0 = μ1P1

n, n > 0 (λn + μn)Pn = μn+1Pn+1 + λn−1Pn−1

Rewriting these equations gives

λ0P0 = μ1P1,

λnPn = μn+1Pn+1 + (λn−1Pn−1 − μnPn), n ≥ 1,
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Limiting Probabilities – An Example

or, equivalently,

λ0P0 = μ1P1,

λ1P1 = μ2P2 + (λ0P0 − μ1P1) = μ2P2,

λ2P2 = μ3P3 + (λ1P1 − μ2P2) = μ3P3,

λnPn = μn+1Pn+1 + (λn−1Pn−1 − μnPn) = μn+1Pn+1.

Solving in terms of P0 yields

P1 =
λ0

μ1
P0,

P2 =
λ1

μ2
P1 =

λ1λ0

μ2μ1
P0,

P3 =
λ2

μ3
P2 =

λ2λ1λ0

μ3μ2μ1
P0.
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Limiting Probabilities – An Example

Pn =
λn−1

μn
Pn−1 =

λn−1λn−2 · · ·λ1λ0

μnμn−1 · · ·μ2μ1
P0.

Using
∑∞

n=0 Pn = 1 we obtain

1 = P0 + P0

∞∑
n=1

λn−1 · · ·λ1λ0

μn · · ·μ2μ1

or

P0 = [1 +
∞∑

n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn
]−1,

and hence

Pn =
λ0λ1 · · ·λn−1

μ1μ2 · · ·μn(1 +
∞∑

n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn
)
, n ≥ 1.
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Limiting Probabilities – An Example

• The above equations also show us what condition is needed for the
limiting probabilities to exist. Namely,

∞∑
n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn
< ∞.
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