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Introduction

o Markovian property
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Example 1. The M/(

/1 Queue

e The M/G/1 Queue.
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— The service times of successive customel

independent randor
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conditional distribution ¢
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f the future depends
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Example 1. The M /G /1 Queue

e For if we knew the number in the system at time ¢, then to predict
future behavior,

— we would “not” care how much time had elapsed since the last
arrival (since the arrival process is memoryless)

— we would care how long the person in service had already been
there (since the service distribution G is arbitrary and therefore not
memoryless)

e Let us only look at the system at “moments” when customers
“depart”.

— let X,, denote the number of customers left behind by the nth
departure, n > 1

— let Y,, denote the number of customers arriving during the service
period of the (n + 1)st customer
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Example 1. The M /G /1 Queue

e When X,, > 0, the nth departure leaves behind X,, customers — of
which one enters service and the other X,, — 1 wait in line.

e Hence, at the next departure the system will contain the X,, — 1
customers that were in line in addition to any arrivals during the
service time of the (n + 1)st customer. Since a similar argument holds
when X,, = 0, we see that

Xn—i—l —

e Since Y,,,n > 1, represent the number of arrivals in nonoverlapping

service intervals, it follows, the arrival process being a Poisson process,

Prof.| Shun-Ren Yang, CS, NTHU 6



Example 1. The M /G /1 Queue

that they are independent and
o’ m
P, =i} = |

e From the above, it follows that {X,,n =1,2,...} is a Markov chain
with transition probabilities given by

Prof. Shun-Ren Yang, CS, NTHU 7



Example 2. The G/M /1 Queue

e The G/M/1 Queue.

— The customers arrive at a single-server service center in

accordance with an arbitrary renewal process having interarrival
distribution G.
— The service distribution is exponential with rate

o If we let X,, denote the number of customers in the system as seen by
the nth arrival, it is easy to see that the process {X,,,n > 1} is a

Markov chain.

e Note that as long as there are customers to be served, the number of
services in any length of time ¢ is a Poisson random variable with

0. @)
-
0

mean ut. Therefore

P
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Example 2. The G/M/1 Queue
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Example 3. The General Random Walk

The general random walk: sy
random variables.

e Let X;,72 > 1, be independent and identically

P{X;

o If we let

S

then {S,,n > 0} is a Ma|

e {S,,n >0} is called the

::j}::aj7 ]:O

n

i=1
rkov chain for which

P =a;_;

general random walk.

o=0and S, =) X,

ms of independent, identically distributed

distributed with

+1,...
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Example 4. The Simple Random Walk

e The random walk {S,,,n > 1}, where S,, = Y]} Xj, is said to be a
simple random walk it for some p, 0 < p < 1,

P{X;,=1} = p
P{X;,=-1} = gq=1-p

Thus in the simple random walk the process always either goes up one
step (with probability p) or down one step (with probability q).

e Consider |5, |, the absolute value of the simple random walk. The
process {|S,|,n > 1} measures at each time unit the absolute distance
of the simple random walk from the origin.

e To prove {|S,|} is itself a Markov chain, we first show that if |S,| = 1,
then no matter what its previous values the probability that S,, equals

i (as opposed to —i) is p*/(p* + ¢*).
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Example 4. The Simple Random Walk

Proposition. If {S,,n

Proof.

P{S, =il|S,

> 1} is a simple ran

L’ — 7;7 ‘Sn—ly — in—la .

dom walk, then

{ - a S pz
.,’51‘—21}—192.4_412.

Prof. Shun-Ren Yang, CS, NTHU

12



Example 4. T

he Simple Random Walk

e From the prop

Py

e Hence, {|5,|,n

osition, it follows up
that

Sp1| = 1+ 1]]5n] =

> 1} is a Markov ck

on conditioning on whether

by ooy | ST}

1ain with transition probabilities
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Chapman-Kolmogorov Equations

e P°;: the one-step transiti

on probabilities

e Define the n-step transition probabilities P/}

a process in state ¢ will b

That is,

Pl = P{Xp4

where, of course, P,L-lj = ;.

e The Chapman-Kolmogor

these n-step transition pi

®@,

P =)

k=0

m :j‘Xm :i}a n

ov equations provide

PPy for all n,m

and are established by observing that

to be the probability that

e in state j after n additional transitions.

a method for computing

robabilities. These equations are

>0, alli,j,

?
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Chapman-Kolmogorov Equations

Pz'?er P{Xntm = j|Xo =i}

o Let P denote the matrix of n-step transition probabilities F;, then

the Chapman-Kolmogorov equations assert that

pntm) — p) ., p(m)

where the dot represents matrix multiplication.
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Chapman-Kolmogorov Equations

e Hence,
pn) _ p.pn-1) _ p. p. pn-2

and thus P™ may be calculated by multiplyi

n times.

) =...= p"

ng the matrix P by itself
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Classification of

States

e State j is said to be accessible from state ¢ if for some n > 0, Bj; > 0.

e Two states ¢ and j accessible to each other are said to communicate,

and is denoted by ¢

e Proposition. Communication is an equ

| A
2. it ¢ < j, then
3. it i<+ 7 and j

Proof. The first two parts follow trivial

communication.

there exists m, n such that F;* > 0,

Similarly, we ma

J b

< k, then 7 < k.

o0
m4+n m
Pq;k — E :Pzr rk

r=0

To prove 3., suppose

livalence relation. That is:

ly from the definition of
that 7 <» 7 and 7 < k; then
; 7. > 0. Hence,

> PP > 0.

y show there exists an s for which P, > 0.
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Classification of States

e Two states that communicate are said to be in the same class; and by
the above proposition, any two classes are either disjoint or identical.

e We say that the Markov chain is ¢rreducible if there is only one class
— that is, if all states communicate with each other.

e State ¢ is said to have period d if Pj; = 0 whenever n is not divisible

by d and d is the gr

A state with period

Let d(i) denote the
proposition that pex

Proposition. If 7 «

1 is said to be aperi

period of . We now
-1odicity is a class pr

— 7, then d(i) = d(j).

nfinite.)

odic.

show by the following

operty.

catest integer with this property. (If P = 0 for all
n > 0, then define the period of 7 to be i
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Classification of States

Proof.

o et m
Then

e The se
repress
in j af
probal
the ch

Hence
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d(i). !
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n-+m n pm
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ter n 4+ s + m transi
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ain is in ¢ both after
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\ similar argument y
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that starting in j the
rions, whereas the rig
nt subject to the fur
n and n + s transiti
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bose that P > 0.
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Lt 21t 1)

e the left-hand side
» chain will be back

*ht-hand side is the

ther restriction that
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thus
rerefore, d(j) divides
s d(j), thus
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Classification of States

e For any states ¢ and j, define f/; to be the probability that, starting in
7, the first transition into j occurs at time n.

e Formally,

Jij
’LZL P{Xn:.ja)(k‘#]vk:la7n_1‘XO:Z}

o Let
o0

fia =2 fiy
n=1

Then f;; denotes the probability of ever making a transition into state
7, given that the process starts in 7. (Note that for ¢ # j, f;; is positive
if, and only if, j is accessible from 1i.)

e State j is said to be recurrent if f;; = 1, and transient otherwise.
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Classification of States

Proposition. State j is recurrent if, and only if,
00

\N n

2 Fjj =00
n=1

Proof.

e State j is recurrent if, with probability 1, a process starting at j
will eventually return.

e However, by the Markovian property it follows that the process
probabilistically restarts itself upon returning to 5. Hence, with
probability 1, it will return again to j.

e Repeating this argument, we see that, with probability 1, the
number of visits to § will be infinite and will thus have infinite
expectation.

e On the other hand, suppose j is transient. Then each time the
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Classification of

States

process returns t

will never again return; hence the nu

with finite mean

e By the above arg
if,

e But, letting [, =

it follows that >’

o

E[>

n=0

the result follows.

E[number of visits to

L/(1 = fi5)-

rument we see that s

1 it X, =y

0 otherwise,

o j there is a positive probability 1 — f;; that it
mber of visits is geometric

tate j is recurrent if, and only

7| Xo = j] = o0.

o I, denotes the number of visits to j. Since

I/ Xo=j]=) ElL|Xo=j]=)>_ P}
n=0 n=0
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Classification of States

e The proposition also shows that a {ransient state will only be visited a
finite number of times (hence the name transient).

e This leads to the conclusion that in a finite-state Markov chain not all

states can be transient.

e To see this, suppose the states are 0,1,..., M and suppose that they
are all transient. Then after a finite amount of time (say after time Tp)
state 0 will never be visited, and after a time (say 71) state 1 will
never be visited, and after a time (say T») state 2 will never be visited,
and so on.

e Thus, after a finite time T = max{Ty, T1,...,Ths} no states will be
visited. But as the process must be in some state after time 1T', we
arrive at a contradiction, which shows that at least one of the states
must be recurrent.
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Classification of States

We use the above proposition to prove that recurrence, like periodicity, is a
class property.

Corollary. If 7 is recurrent and ¢ «<» j, then j is recurrent.

Prootf. Let m and n be such that Pj; > 0, P > 0. Now for any s > 0

m—+n—+s m pPS PN
P > P'PLP,

11 1]

and thus

»

= 00,

.

+nts
> P s RS
S S

and the result follows from the above proposition.
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Classification of States

Example. The Simple Random Walk.

e The Markov chain whose state space is the set of all integers and
has transition probabilities

Pi,i--l—lzp:l_Pi,i—la i:()a:l:]-w"a

where 0 < p < 1, is called the simple random walk.

e One interpretation of this process is that it represents the winnings

of a gambler who on each play of the game either wins or loses one
dollar.

e Since all states clearly communicate it follows from the corollary
that they are either all transient or all recurrent.

e Consider state 0 and attempt to determine if > 7 ; Py is finite or
infinite.

e Since it is impossible to be even (using the gambling model
Prof. Shun-Ren Yang, CS, NTHU 25




Classification of States

interpretation) after a
have that

F

e On the other hand, tl
and only if, he won n

e As each play of the g:
loss with probability
binomial probability

2n

(

P2n _
00 n

)p" (1 —

e By using an approximn

n odd number of pla

2n—+1

00 = 0,

n =1,
1e gambler would be
of these and lost n ¢

me results in a win
| — p, the desired prc

- nln)! (p(]‘ — P

1ation, due to Stirlin,

nl ~ nn+1/26_”\/§

s, we must, of course,

2.

even after 2n trials if,
f these.

with probability p and a
bbability is thus the

)"

o, which asserts that

n=1223,...

T
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Classification of States

where we say that a, ~ b, when lim, . (a,/b,) = 1, we obtain

_ Up(l -p))”
Vo

e [t is easy to verify that if a,, ~ by, then ) a, < 00, if, and only if,

o5 b < 0o, Hence Y 2 | Pjy will converge if, and only if,

— (4p(1 —p))"

does.

e However, 4p(1 — p) < 1 with equality holding if, and only if, p = %
Hence, > 2 Pjy =

<
oc if, and only if, p = % Thus, the chain is
recurrent when p %

and transient if p # %
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Classification of

States

Remark.

e When p = 1, the ab
could also look at s

dimension.

e For instance, in the
process would, at ee
right, up, or down,

e Similarly, in three d

make a transition to any of the six adjac

ove process is called
ymmetric random wa

\ch transition, either
each having probabil

imensions the proces

a symmetric random walk. We
ks in more than one

two-dimensional symmetric random walk the

take one step to the left,
ity %.

s would, with probability %,
ent points.

e By using the same method as in the one-dimensional random walk it

can be shown that the two-dimensional ;

recurrent, but all hi

gher-dimensional rax

symmetric random walk is

1dom walks are transient.
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Classification of States

Corollary. Ii

Proof.

Suppo

Say th
1, ther
probal

Say th
missed

Opport'unity 3 if XT2—|—n 7& ]

It is easy to see that the oj
a geometric random variab

with p

implies that the number of

[ 7 <> 7 and j is recul

se Xg =1, and let n

at we miss opportun
1 let T denote the n
bility 1 by the previo

at we miss opportun
[, let T5 denote the n

robability 1. The res

e

rent, then f;; = 1.

be such that PZ-?- > (.

ity 1if X,, #7. If w
ext time we enter 7 (|

us corollary).

', and so on.

bportunity number o
le with mean 1/P]},

sult follows since ¢ be
potential opportuni

e miss opportunity
17 is finite with

f opportunity 2 is

ext time we enter ¢ and say that we miss

f the first success is
and is thus finite
Ing recurrent

ties 1s infinite.
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Classification of States

Remark.
o Let N;(t) denote the number of transitions into j by time ¢.

e If j is recurrent and Xy = j, then as the process probabilistically starts
over upon transitions into j, it follows that {N;(¢),t > 0} is a renewal
process with interarrival distribution {f7;,n > 1}.

o If Xog=1,7 j,and j is recurrent, then {NN;(¢),t > 0} is a delayed

renewal process with initial interarrival distribution {f,n > 1}.

n
179
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Limit Theorems

e It is easy to show that if state j is transient, then

0

Y Pli<oo  foralli,
n=1

meaning that, starting in ¢, the expected number of transitions into

state 7 is finite. As a consequence it follows that for j transient

Py — 0 asn — oo.

o Let pj; denote the expected number of transitions needed to return to
state 7. That is,

’

00 if 7 is transient
_ ®.@)
[hjj = n e ..
E nfj; if jis recurrent
\ n=1
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Limit

Theorems

e By interpreting trax

the following theorem from Chapter 3.

e Theorem. If 7 and

1

. P{lim N;(t)/

t—o00
n
: k
- Jim sz'j /n
k=1
. If 7 is aperiods
. It 5 has period

[ — 1/,Lij’XO = Z} =

= 1/pj;

¢, then lim P =1

n—oo

d, then lim P =

n—oo JJ

4 communicate, the:

1sitions into state j as being renewals, we obtain

[1:

Hjj
d/ Hjj
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Limit Theorems

e If state j is recurrent, then we say

pi; < oo and 1

o If we let

it follows that

null recurrent

e Proposition.

T = lin

mn—

a recurrent state j is

if 7Tj = 0.

that it is positive recurrent if

ull recurrent if p;; = oo.

nd(j)
n P

s positive recurrent if m; > 0 and

Positive (null) recurrence is a class property.

e A positive recurrent, aperiodic stat

e Before presenting a theorem that s]

probabilities in the ergodic case, we

e is called ergodic.

hows how to obtain the limiting
> need the following definition.
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Limit Theorems

e Definition. A probability distribution {P;,j > 0} is said to be
stationary for the Markov chain if

i

®. @)
P;=> PPy, j>
i=0
o If the probability distribution of X¢ — say P; = P{Xp =35},7 >0 —
is a stationary distribution, then

oo

S P{X) = j|Xo = i} P{Xo = i}

1=0

P{X1 =7} H

> PP =P

1=0
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Limit Theorems

and, by induction,

P{Xn:j}

e Hence, if the initial
distribution, then X

e In fact, as {X,,n >
that for each m > 0
distribution for eacl
stationary process.

= ZP{Xn:jp
Z;O

= ) PP =P
1=0

probability distribut
', will have the same

0} is a Markov chai
7Xn7 Xn—l—la s 7Xn-|—7
1 n; in other words,

(1 =i P{X,_1 =i}

ion is the stationary
» distribution for all n.

n, it easily follows from this
» Will have the same joint

{Xn,n >0} will be a
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Limit Theorems

Theorem. An irreducible aperiodic Markov chain belongs to one of the
following two classes:

1. Either the states are all transient or all null recurrent; in this case,
Pj; — 0 as n — oo for all 7, j and there exists no stationary
distribution.

2. Or else, all states are positive recurrent, that is,

m; = lim P; > ()

n—oo

In this case, {7;,7 =0,1,2,...} is a stationary distribution and
there exists no other stationary distribution.
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Limit Theorems

Proof. We will first prove 2. To begin, note that

o0 M
Pt =3 "PliPy; > ) PjP; forall M.
k=0 k=0

Letting n — oo yields
M

Uy > Z Wkpkj for all M,
k=0

implying that
o

W;fZZWkij, 72 0.
k=0

To show that the above is actually an equality, suppose that the

inequality is strict for some j. Then upon adding these inequalities we
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Limit Theorems

obtain

(

oo oo X0

A\ .
DT> D) Tkl =
j=0 =0 k=0

which is a contradiction. Therefore,

o0
7Tj = Z Wkija
k=0

@,

>

k=0

J

0. @) 0. @)
e D Prj =3,
k=0

7=0

' =0,1,2,...

Putting P; = 7;/ > g Tk, we see that {F;,7 =0,1,2,...} is a
stationary distribution, and hence at least one stationary distribution

exists.

Now let {P;,7 =0,1,2,...} be any stati
{P;,7=0,1,2,...} is the probability dis

Pj — P{Xn ::j}

onary distribution. Then if
tribution of Xg, then
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Limit Theorems

From (2)

Letting n

To go the

@)
— ZP{Xn —
1=0

we see that

Pi>>

1=(

and then M approa

~
1

b;

other way and show

j[Xo =i} P{Xo =i}

PP for all M.

)

ch oo yields

00
f Z’ﬂ'jpi = Ty.
1=0

that P; < 7;, use (-

— Pn

;1] v
1=0

(2)

2) and the fact that
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Limit Theorems

P,L-"} < 1 to obtain

M 00
Py <> PiPi+ » P forall M,
i=0 i=M+1
and letting n — oo gives
M 00
Pj < :7TjP7; -+ Z P, for all M.
i=0 i=M+1

Since ) o~ P; = 1, we obtain upon letting M — oo that

00
Pj < Z?iji = Tj.
1=0
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Limit Theorems

If the states are transient or null recurrent and {P;,j =0,1,2,...} is a
stationary distribution, then Equation (2) holds and P/} — 0, which is
clearly impossible. Thus, for case 1., no stationary distribution exists

and the proof is complete.
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Limit Theorems

Remarks.

1. When the situation is as described in part (ii) of the above theorem

we say that the Markov chain is ergo

2. If the process is
resultant Markoy

3. In the irreducibls
that the m;, 7 > |

But now 7j MUS]
that the Markov

r chain is stationary.

e, positive recurrent,
), are the unique nor

t be interpreted as tl
chain is in state j.

dic.

started with the limiting probabilities, then the

pertodic case we still have
inegative solution of

T = Zﬂ'fipz'j and Z’f(‘j = 1.
1

J
1e long-run proportion of time
['hus, m; = 1/44;, whereas the
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Limit Theorems

limiting probability of going from j to j in nd(j) steps is given by
d’

lim ij}d = — =dm;
nTee Hjj

where d is the period of the Markov chain.
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Limiting Prob. for th

e Embedded )

1/G/1 Queue

e Consider again the embe
let

a;

That 1s, a; 1s the probab

transition probabilities for this chain are

P()j —
P, =
P =

dded Markov chain ¢

o0 .]

_ / 6—>\.§U <)‘x) dG
0 j!

ility of j arrivals dur

aj,

of the M /G /1 system and

().

ing a service period. The

Aj—i4-1, L > 07 j >1—1

0, j<i—1

o Let p=) ;ja;. Since p equals the mean number of arrivals during a

service period, it follows

that

p = AE[S],
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Limiting Prob. for the Embedded ///G /1 Queue

where S 1s a service

e We show that “the

solving the system of equations

s j = Z 7 zf .
i

e These equations take the form

Ty

To solve, we introduce the generating fu

m(

Markov chain is posi

j+1
= Toa; + Z ;0 —i-
1=1

‘OO .
) = Z mis?, A(
i=0

time having distribution G.

™
<

1 j = 0.

nctions

m .
) = Z a;s’.
j=0

tive recurrent when p < 1”7 by
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Limiting Prob. for the Embedded 1

[/G/1 Queue

Multiplying both sides of

m(s) oA

7TOA

7TOA

or

/

To compute mg we let s -

o As

m(s) =

(3) by s/ and summn

oo J+1

(5) + Z Z 05—+
j=0i=1

xXO

oo
(s) + s 1 Z ;8"
i=1 j=i-

(s) + (m(s) — m0) A(s

2.

(s — 1)7’(‘014(8).

1ing over j yields
57

r —i+1
aj—it15’

-1

)/87

s — A(s)

— 1 in the above.

lLII% A(S) — ;—%ai =1

)
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Limiting Prob. for the Embedded ///G /1 Queue

this gives
lim7(s) = mglim i
s—1 s—1 5 — A(s)
= mo(l - A'( N

where the last equality follows from L’hospital’s rule.

e Now
o0

= 2_iai = p.
1=0

and thus

' _ 7o
il—{riﬂ(s) C1-p

e However, since limg_,; 7(s) = > ;2 7;, this implies that

> 2o m = mo/(1 — p); thus stationary probabilities exist if and only if
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Limiting Prob. for the Embedded ///G /1 Queue

p < 1, and in this case,
mo=1—p=1—-AE[S].

Hence, when p < 1, or, equivalently, when E[S] < 1/,

r(s) = (1 = AE[S])(s —1)A(s)
s — A(s) '
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A Population Model

e Suppose t

independe
new mem
random v

If we let .
beginning
Markov cl

To find tk
distribute

Since eacl
beginning
number o

random v

'hat during each timg
ntly dies with proba
bers that join the po
ariable with mean .

X,, denote the numb
of period n, then it
hain.

1e stationary probabi
d as a Poisson randc

n of these Xy individ

of the next period ¥
f them that are still
ariable with mean «

e period, every meml
bility p, and also the
pulation in each tim

er of members of the
is easy to see that {

lities of this chain, s
m variable with par:

uals will independen
vith probability 1 — j
in the population at
1 —p).

per of a population
1t the number of
e period is a Poisson

population at the
Xp,n=1,...}isa

uppose that Xy is
ameter a.

tly be alive at the
p, it follows that the
time 1 is a Poisson
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A Population Model

e As the nu
an indepe
that X 1 18

then the ¢

e Hence, by

conclude
That is,

mber of new membe
ndent Poisson rando
s a Poisson random v

Y =
~hain would be static

" the uniqueness of tl
that the stationary d

7Tj = B_A/p()\

rs that join the popt

mnary.

1e stationary distribt
listribution is Poissoi

m variable with mea
ariable with mean o/

a(l —p)+ A

/p) /3,

llation by time 1 is

n A, it thus follows
1 —p)+ A. Hence, if

1tion, we can
n with mean \/p.

j=0,1,...
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Transitions Among Classes

We prove that a recurrent cls

entered it is never left.

Proposition. Let R be a re
Pij = 0.

1ss 1S a closed class 1in the sense that once

current class of states. If i € R,j ¢ R, then

Proof. Suppose P;; > 0. Then, as ¢ and j do not communicate (since

j ¢ R), P;i =0 for all n.
a positive probability of

at least F;; that the

Hence if the process starts in state ¢, there is

process will never return

to ¢. This contradicts the fact that ¢ is recurrent, and so P;; = 0.
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Transitions Among Classes

e Let 5 be a given recurrent state and let I’ denote the set of all

transient states. For ¢ € T', we are often interested in computing f;;,

the probability of ever entering j given that the process starts in .

e The following proposition, by conditioning on the state after the initial
transition, yields a set of equations satisfied by the f;;.

e Proposition 4.4.2. If j is recurrent, then the set of probabilities
{fi;,i € T} statisfies

j__zpzkfkj >_J Zk,ZGT
keT kcR

where R denotes the set of states communicating with j.
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Transitions Among Classes

Proof.

fij =

where we h
and the pra

P{N;(c0) > 0[Xo =

all k
keT kER
> friPu+ > P,
keT kER

ave used the corollar;
position in asserting

i}

Y P{Nj(c0) > 0| X =14, X1 = k} P{X1 = k| Xo = i}

> friPi+ D frgPa+ Y fugPa

k¢ R
kgT

that fr; =0for k ¢ T,k ¢ R.

y in asserting that f; = 1for k € R
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The Gambler’s Ruin Problem

e Consider a gambler who at each play of the game has probability p of
winning 1 unit and probability ¢ = 1 — p of losing 1 unit.

e Assuming successive plays of the game are independent, what is the
probability that, starting with ¢ units, the gambler’s fortune will

reach IV before reaching 07

o If we let X,, denote the player’s fortune at time n, then the process
{X,,n=0,1,2,...} is a Markov chain with transition probabilities

Po = Pnn =1,
Pi,i—l—l — p::]-_P’i,i—la 2217277]\7_1

e This Markov chain has three classes, namely, {0}, {1,2,..., N — 1},
and { N}, the first and third class being recurrent and the second

transient.
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The Gambler’s Ruin Problem

e Since each transient
after some finite am
goal of N or go broke.

o Let f; = f;n denote
the gambler’s fortune will eventually rea

e By conditioning on

equivalently, by using Proposition 4.4.2)

fi=ofir1+qfi-1,

or, equivalently, since p + q = 1,

fiv1 — fi

state is only visited

the probability that

the outcome of the i

— %(fz - fi—1)7

i=1,2,..

finitely often, it follows that,

ount of time, the gambler will either attain her

, starting with 7,0 < < N,
ch N.

nitial play of the game (or,

, we obtain

N -1,
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The Gambler’s Ruin

Problem

e Since fy = 0, we see from the above that

fo—f1 =
fs—fa =

fi—fioz1 =

JN—Ina1 =

Adding the first ¢+ — 1 of

fi—fi=

g(fl — fo) = 11
p p

]%(fz — f1) = (%)i
]%(fz’—l — fic2) =

q
(=)(fn—1— fn—2
D
these equations yield

q 4v2 |
fl[(:Z;)JF(]—?) +

0NV

hi

(=) f

IR

_ (9\N—1
)_(.p) f1.
S

4y\i-1
+(p,) ]
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The Gambler’s Ruin Problem

or |
( 1_ 1
(¢/p) Aol
f,.—={ 1—1(a/p) p
1 f1 if = =1.
\ p
Using fny = 1 yields
( 1-(¢/p)’ £ ]
=4 1L—=(g/p)N ?
7 o1
. =y
e It is interesting to note that as NV — o0
Y (a/p)’ ifp> 3
Z 0 if p < %
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The Gambler’s Ruin Problem

e Hence, from the continuity property of probabilities, it follows that

— ifp > %, there is a positive probability that the gambler’s fortune

will converge to infinity:;

— whereas if p < %, then, with probability 1, the gambler will

eventually go broke when playing against an infinitely rich

adversary.
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Time-Reversible Markov Chains

e An irreducible positive recurrent Markov chain is s

initial state is chosen according to the stationary f

case of an ergodic chain this is equivalent to imagi

process begins at time t = —o00.)

e Consider
Pz’j and st
time we t

e That is, s
Xna Xn—l
Markov c]

now a stationary Ma
bationary probabilitie
race the sequence of

tarting at time n cor
,.... It turns out the
hain with transition

P

1 P{Xm

P{X,.]

rkov chain having tr:
s m;, and suppose th
states going backwaj

1sider the sequence @

1t this sequence of st
probabilities F; defi

= j| X1 =i}
1 =i X = jIPLX,

ning that the

rds in time.

f states
ates 1s itself a
ned by

=Jj}

n

P{Xm_|_1 — Z}

stationary if the
robabilities. (In the

wnsition probabilities
at starting at some
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Time-Reversible Markov Chains

5 P

1)

e To prove that the reversed process is indeed a Markov chain we need
to verify that

P{Xm — j’Xm—l—l — 7:7 Xm—|—27 Xm—|—37 X } — P{Xm — j’Xm—l—l — Z}

e Think of the present time as being time m + 1. Then, since X,,,n > 1
is a Markov chain it follows that given the present state X, the
past state X,, and the future states X,,12, X;n13,... are independent.
But this is exactly what the preceding equation states.

e Thus the reversed process is also a Markov chain with transition
probabilities given by
PF — i L

Oy T )
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Time-Reversible Markov Chains

o It P/, = Bj; for all 4, j, then the Markov chain is said to be time
reversible.

e The condition for time reversibility, namely, that
Wif)ij = ﬂ'jpj' for all i,j,

can be interpreted as stating that, for all states ¢ and j, the rate at
which the process goes from ¢ to j (namely, m;F;;) is equal to the rate
at which it goes from j to ¢ (namely, m;P;;).

e This is an obvious necessary condition for time reversibility since a
transition from ¢ to j going backward in time is equivalent to a
transition from j to ¢ going forward in time; that is, it X,, = ¢ and
Xm—1 =7, then a transition from ¢ to j is observed if we are looking
backward in time and one from j to ¢ if we are looking forward in time.
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Time-Reversible

Markov Chains

Theorem. A stationar;
starting in state 17, 3
reversed path, for al

P

21

for all states 7,71, ...

Proof. The proof of ne
states ¢ and j§ and r

P; i

Summing the above

v Markov chain is time reversible if, and only if,
ny path back to ¢ he
1 2. That is, if

P By i = P b By

1,82 * keslk—1 °
) Uk -
cessity is straightfory
ewrite the above equation as

By - Biy i Pji = Pij Py, - Py i

7ik vt
over all states i1, 19,...,1; yields

k+1p . p  pktl

1S the same probability as the

vard. To prove sufficiency fix
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Time-Reversi

ble Markov Ch

ains

Hence

Letting n —

which establishes the result.

n

> Pt

n
> now yields

Pjiﬂ'j =

k=1 k=1
Bji =
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Time-Reversible Mar

‘kov Chains

Theorem. Consider an irrec
probabilities P;;. If one c
summing to unity, and a
that

then the m;,2 > 0, are thy
transition probabilities o

lucible Markov chain
an find nonnegative
transition probabilit

p*

il = il

> stationary probabil
[ the reversed chain.

Proof. Summing the above equality over all 7 yi¢
> Tl =

Hence, the m;’s are the st

(

WjZf
1

.

ationary probabilitie

| with transition
numbers m;, 7 > 0,

Ly

y matrix P* | such

ities and P are the

2lds

Dk
Jt

s of the forward chain
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Time-Reversible Markov Chains

(and also of the reversed chain; why?). Since

7Tz'Pz'j_

mj

P =
it follows that the F7. are the transition probabilities of the reversed
chain.
Remarks. The importance of the previous two theorems is that we can
sometimes guess at the nature of the reversed chain and then use the

set of equations m; %, = TrjP;; to obtain both the stationary

probabilities and the P;; An example will be provided on the course
web site for self-reading.
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Semi-Markov Processes

o A semi-Markov process is one that changes states in accordance with a
Markov chain but takes a random amount of time between changes.

e More specifically, consider a stochastic process with states 0,1, ...,
which is such that, whenever it enters state 7,7 > 0:
— The next state it will enter is state j with probability F;;,4,5 > 0.

— Given that the next state to be entered is state 7, the time until the
transition from ¢ to j occurs has distribution Fj;.

If we let Z(t) denote the state at time ¢, then {Z(t),t > 0} is called a
semi-Markov process.

e Thus a semi-Markov process does not possess the Markovian property
that given the present state the future is independent of the past.

e In predicting the future not only would we want to know the present
state, but also the length of time that has been spent in that state.
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Semi-Markov Processes

e A Markov chain is a semi-Markov proces

That is, all transitic

e Let H; denote the distribution of time that the semi-Markov process

0 ¢

Fii(t) = L

n times of a Markov

3s 1In which

<1
> 1.

chain are identically 1.

spends in state ¢ before making a transition. That is, by conditioning

on the next state, we see

and let u; denote its mean. That is,

Mg = / CCdHl(ZE)
0

Hi(t) =) PijFy
j
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Semi-Markov Processes

o If we let X,, denote
Markov chain with 1
embedded Markov cl
semi-Markov proces
irreducible as well.

e Let T;; denote the time between successi

let py; = E|Ty;]. By

we could derive an expression for the lin

semi-Markov proces

1ain of the semi-Mar

the nth state visited, then {X,,n > 0} is a

s is 2rreducible if the

using the theory of ¢

S.

transition probabilities F;;. It is called the

kov process. We say that the
embedded Markov chain is

ve transitions into state ¢ and
lternating renewal processes,
1iting probabilities of a
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Semi-Markov Processes

Proposition. If the semi-Markov
nonlattice distribution with fi

process is irreducibl
nite mean, then

P1Z(t) =1|2(0) = j}

e and if 7T;; has a

exists and is independent of the initial state. Furthermore,

p=1

i

Proof. Say that a cycle begins whenever the process enters state ¢, and

say that t

whose on
the result

he process is “on” when in state ¢ and “c
Thus we have a (delayed when Z(0) # ¢) alternatir
time has distribution H; and whose cycl
follows from the proposition in Chapter

ff” when not in <.
1g renewal process

> time is 1;;. Hence,
3.
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Semi-Markov Processes

Corollary. If the semi-Mark
with probability 1,

& '

oV process 1s irreduc

amount of time in 7 «

ible and p;; < oo, then,

luring [0, t]

= lim
Mii =00

That is, u; /i equals the

t

> long-run proportior

1 of time 1n state 1.
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Limiting Probabilities of Semi-Markov Processes

e To compute the P;, suppose that the embedded Markov chain
{Xn,n > 0} is irreducible and positive recurrent, and let its stationary
probabilities be 7;, 7 > 0. That is, the 7;,7 > 0, is the unique solution
of

o= Zﬂipij'
)
E:W;i = 1,
J

and 7; has the interpretation of being the proportion of the X,,’s that
equals j. (If the Markov chain is aperiodic, then 7; is also equal to

limy—o0 P{Xn = j}.)
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Limiting Probabilities of Semi-Markov Processes

Theorem. Suppose the
nonlattice distributi
embedded Markov ¢

Proof. Define the nota
e Y;(j) = amount
state, 7, 7 > 0.

e N;(m) = numbet
semi-Markov prc

In terms of the abos

> semi-Markov proces

on with finite mean.
hain {X,,,n > 0} is

p, — Tt

3s 1s irreducible and T;; has a
Suppose further that the
positive recurrent. Then

DTl
J

tion as follows:

of time spent in stat

- of visits to state 7 1

)CESS.

ye notation we see th

e ¢ during the jth visit to that

n the first m transitions of the

at the proportion of time in ¢
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Limiting Probabilities of Semi-Markov Processes

during the first m transitions, call ]

Now since N;(:

Pi—m

it Pi—,, 1s as follows:

Yi(4)

Yi(J)

(m)

=1

Yi(J)

\
L d
J

>

m) NQ@)
. 2 Ny(m)

) " ()
2:: Ni(m)

1

1
i

m

<o

it follows from the strong law of
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Limiting Probabilities of Semi-Markov Processes

large numbers that
N;(m)

>

Yi(J)

=1 Ni(m)

> i

and, by the strong law for renewal processes,

m

Hence, letting m — oo in (4.8.1) shows that

T g

that

» (E[number of transitions between visits to z’])_l = T

lim P’i:m =
mM—00

and the proof is complete.

%)

2Tkt
J
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Limiting Probabilities of Semi-Markov Processes

Example.

e Consider a machine that can be in one of three states: good
condition, fair condition, or broken down.

e Suppose that a machine in good condition will remain this way for
a mean time p; and will then go to either the fair condition or the

broken condition with respective probabilities % and i.

e A machine in the fair condition will remain that way for a mean
time o and will then break down. A broken machine will be

repaired, which takes a mean time p3, and when repaired will be in

WG V9"

the good condition with probability and the fair condition with

probability % :

e What proportion of time is the machine in each state?
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Limiting Probabilities of Semi-Markov Processes

Solution. Letting the states

T+ T2ty = 1,
2
T = =13,
1 3 3
3 1
Ty = 17‘-1 + §7737
m3 = 47‘(‘1 9.
The solution is
4 1
T = — To = — T3 = —.
1 ]57 2 37 3

Hence, FP;, the proportion

P

be 1,2,3, we have that the m; satisty

2
5

of time the machine is in state ¢, is given by

410

4pu1 + dp2 + 6u3

?
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Limiting Probabilities of Semi-Markov Processes

S12
P2 — ’
41 + dpg + 63
m
P3 — ILI/L;

4pn + dpg + 6z
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Limiting Probabilities of Semi-Markov Processes

e Define
— Y(t) = time fron
— S(t) = state ente

e We are interested in

lir

t—
e Again, we use the t]

e Theorem. If the s¢
then

lim P{

t—00

n ¢ until the next tra

red at the first trans

| computing

7

0 P{Z(t) =i, Y (t)

heory of alternating :

"mi-Markov process i

Z(t)=14Y(t) >z,S

\>

nsition,

sition after t.

x, S(t)

Jt

renewal processes.

s irreducible and not lattice,

(t) = j|Z(0) = k}
Py [° Fij(y)dy
Fig .
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Limiting Probabilities of

Semi-Markov

Processes

Proof.

e Say th
that it
next

Thus ¥
Condit

at a cycle begins eac
is “on” if the state
time units and the
ve have an alternatix

fioning on whether t|
E|“on” time in

where X;; 1s a random var:

representing the time to m
yt =1

e Hence

nax(0,y).

E[“on” time in cycl

'h time the process e
is ¢ and it will remai
next state is j. Say i
1g renewal process.

he state after ¢ is j o

lable having distribu
ake a transition fron

e|

P;; / P{X
0

| a Cycle] = P@JE[(XZ

nters state ¢ and say
n ¢ for at least the
t is “off” otherwise.

r not, we see that

tion ﬂj and
1 72 to 7, and

i — T > alda
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Limiting Probabilities of Semi-Markov Processes

= Pij/o Fij(a+ z)da

= Pij/ Fi(y)dy.

As FElcycle time| = pu;;, the result follows from alternating renewal

R

processes.

Corollary. If the semi-Markov process is irreducible and not lattice, then

lim P{Z(t) =i,Y(t) > 2| Z(0) = k} = / T H () dy s

t—00
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