Chapter 3. Renewal Processes

Prof. Shun-Ren Yang
Department of Computer Science,
National Tsing Hua University, Taiwan

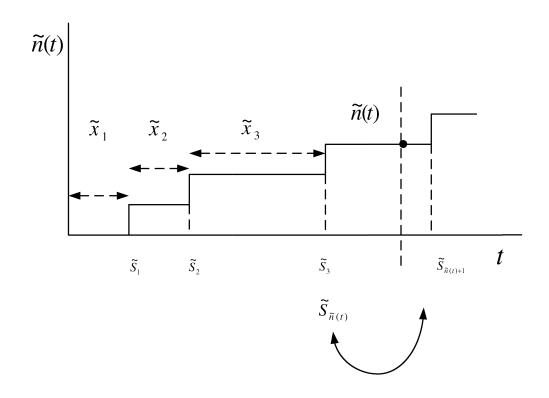
Outline

- Distribution and Limiting Behavior of $\tilde{n}(t)$
 - Pmf of $\tilde{n}(t) : P(\tilde{n}(t) = k) = ?$
 - Limiting time average : $\lim_{t\to\infty} \frac{\tilde{n}(t)}{t} = ?$ (Law of Large Numbers)
 - Limiting PDF of $\tilde{n}(t)$ (Central Limit Theorem)
- Renewal Function $E[\tilde{n}(t)]$, and its Asymptotic (Limiting) behavior
 - Renewal Equation
 - Wald's Theorem and Stopping time
 - Elementary Renewal Theorem
 - Blackwell's Theorem

Outline

- Key Renewal Theorem and Applications
 - Definition of Regenerative Process
 - Renewal Theory
 - Key Renewal Theorem
 - Application 1: Residual Life, Age, and Total Life
 - Application 2: Alternating Renewal Process/Theory
 - Application 3: Mean Residual Life
- Renewal Reward Processes and Applications
 - Renewal Reward Process/Theory
 - Application 1: Alternating Renewal Process/Theory
 - Application 2: Time Average of Residual Life and Age
- More Notes on Regenerative Processes

Distribution and Limiting Behavior of $\tilde{n}(t)$



$$\{\tilde{x}_n, n = 1, 2, \ldots\} \sim F_{\tilde{x}}; \text{ mean } \bar{X} \ (0 < \bar{X} < \infty)$$

 $N = \{\tilde{n}(t), t \geq 0\} \text{ is called a renewal (counting) process}$

$$\tilde{n}(t) = \sup\{n : \tilde{S}_n \leq t\}$$
 (. There are always finite renewals $= \max\{n : \tilde{S}_n \leq t\}$ in a finite time $(i.e., \tilde{n}(t) < \infty)$)

Distribution and Limiting Behavior of $\tilde{n}(t)$

$$\tilde{n}(t)$$

- 1. pmf of $\tilde{n}(t) \rightarrow \text{closed-form}$
- 2. Limiting time average [Law of Large Numbers]:

$$\frac{\tilde{n}(t)}{t} \stackrel{w.p.1}{\longrightarrow} \frac{1}{\bar{X}} , t \to \infty$$

3. Limiting time and ensemble average [Elementary Renewal Theorem]:

$$\frac{E[\tilde{n}(t)]}{t} \stackrel{w.p.1}{\to} \frac{1}{\bar{X}} , t \to \infty$$

Items 2 and $3 \rightarrow \text{Ergodic Theory}$

Distribution and Limiting Behavior of $\tilde{n}(t)$

4. Limiting ensemble average (focusing on arrivals in the vicinity of t) [Blackwell's Theorem]:

$$\frac{E[\tilde{n}(t+\delta) - \tilde{n}(t)]}{\delta} \stackrel{w.p.1}{\to} \frac{1}{\bar{X}} , t \to \infty$$

5. Limiting PDF of $\tilde{n}(t)$ [Central Limit Theorem]:

$$\lim_{t \to \infty} P\left[\frac{\tilde{n}(t) - t/\bar{X}}{\sigma\sqrt{t}(\bar{X})^{-3/2}} < y\right] = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \sim Gaussian(\frac{t}{\bar{X}}, \sigma\sqrt{t}\cdot\bar{X}^{-\frac{3}{2}})$$

pmf of $\tilde{n}(t)$

$$P[\tilde{n}(t) = n] = P[\tilde{n}(t) \ge n] - P[\tilde{n}(t) \ge n + 1]$$

$$= P[\tilde{S}_n \le t] - P[\tilde{S}_{n+1} \le t]$$

$$\vdots \quad \tilde{x}_i \sim F,$$

$$\vdots \quad \sum \tilde{x}_i \sim F(t) \otimes F(t) \dots \otimes F(t) \equiv F_n(t)$$

$$= F_n(t) - F_{n+1}(t) \qquad n\text{-fold convolution of } F(t)$$

Limiting Time Average

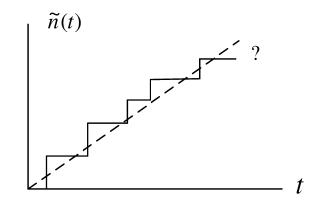
$$\lim_{t \to \infty} \tilde{n}(t) = ?$$

$$P\left[\lim_{t\to\infty} \tilde{n}(t) < \infty\right] = P\left[\tilde{n}(\infty) < \infty\right] = P\left[\tilde{x}_n = \infty \text{ for some } n\right]$$

$$= P\left[\bigcup_{n=1}^{\infty} (\tilde{x}_n = \infty)\right] = \sum_{n=1}^{\infty} P\left[\tilde{x}_n = \infty\right] = 0$$

$$\lim_{t\to\infty} \tilde{n}(t) = \tilde{n}(\infty) = \infty \quad w.p.1$$

Question: What is the rate at which $\tilde{n}(t)$ goes to ∞ ?



i.e.
$$\lim_{t\to\infty}\frac{\widetilde{n}(t)}{t}=?$$

Strong Law for Renewal Processes

Theorem. For a renewal process $N = \{\tilde{n}(t), t \geq 0\}$ with mean interrenewal interval \bar{X} , then

$$\lim_{t \to \infty} \frac{\tilde{n}(t)}{t} = \frac{1}{\bar{X}}, \ w.p.1$$

Proof.

Central Limit Theorem for $\tilde{n}(t)$

Theorem. Assume that the inter-renewal intervals for a renewal process $N = \{\tilde{n}(t), t \geq 0\}$ have finite mean and variance \bar{X} , σ^2 . Then,

$$\lim_{t \to \infty} P\left[\frac{\tilde{n}(t) - t/\bar{X}}{\sigma\sqrt{\frac{t}{\bar{X}^3}}} < y\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{x^2}{2}} dx$$

Proof. (idea: $\tilde{n}(t) \to \tilde{S}_{\tilde{n}(t)} \to CLT$)

Let $m(t) = E[\tilde{n}(t)]$, which is called "renewal function".

1. Relationship between m(t) and F_n

$$m(t) = \sum_{n=1}^{\infty} F_n(t)$$
, where F_n is the *n*-fold convolution of F

2. Relationship between m(t) and F [Renewal Equation]

$$m(t) = F(t) + \int_0^t m(t - x)dF(x)$$

3. Relationship between m(t) and $L_{\tilde{x}}(r)$ (Laplace Transform of \tilde{x})

$$L_m(r) = \frac{L_{\tilde{x}}(r)}{r[1 - L_{\tilde{x}}(r)]}$$

- \rightarrow [Wald's Equation]
- 4. Asymptotic behavior of m(t) $(t \to \infty, \text{Limiting})$
 - → [Elementary Renewal Theorem]
 - \rightarrow [Blackwell's Theorem]

1.
$$m(t) = E[\tilde{n}(t)] \stackrel{?}{\longleftrightarrow} F_n \text{ (i.e., PDF of } \tilde{S}_n)$$

Let
$$\tilde{n}(t) = \sum_{n=1}^{\infty} I_n$$
, where $I_n = \begin{cases} 1, & n_{th} \text{ renewal occurs in } [0, t]; \\ 0, & \text{Otherwise;} \end{cases}$

$$m(t) = E[\tilde{n}(t)] = E\left[\sum_{n=1}^{\infty} I_n\right]$$

$$= \sum_{n=1}^{\infty} E[I_n]$$

$$= \sum_{n=1}^{\infty} P[$$

$$= \sum_{n=1}^{\infty} P[$$
]

$$\therefore m(t) = \sum_{n=1}^{\infty} F_n(t)$$

$$\underline{\text{or}} \quad m(t) = \sum_{n=1}^{\infty} P[\tilde{n}(t) \ge n] = \sum_{n=1}^{\infty} P[\tilde{S}_n \le t] = \sum_{n=1}^{\infty} F_n(t)$$

As $t \to \infty$, $n \to \infty$, finding F_n is far too complicated

 \Rightarrow find another way of solving m(t) in terms of $F_{\tilde{x}}(t)$

2.
$$m(t) \stackrel{?}{\longleftrightarrow} F_{\tilde{x}}(t)$$
 (i.e., PDF of \tilde{x})

$$\tilde{S}_n = \tilde{S}_{n-1} + \tilde{x}_n$$
, for all $n \geq 1$, and \tilde{S}_{n-1} and \tilde{x}_n are independent,

$$P[\tilde{S}_n \le t] = \int_0^t P[\tilde{S}_{n-1} \le t - x] dF_{\tilde{x}}(x), \text{ for } n \ge 2$$

for
$$n = 1, \tilde{x}_1 = \tilde{S}_1, P[\tilde{S}_1 \le t] = F_{\tilde{x}}(x)$$

$$\therefore m(t) = \sum_{n=1}^{\infty} P[\tilde{S}_n \le t] = F_{\tilde{x}}(t) + \int_0^t \sum_{n=2}^{\infty} P[\tilde{S}_{n-1} \le t - x] dF_{\tilde{x}}(x)$$

$$m(t) = F_{\tilde{x}}(t) + \int_0^t m(t-x) \cdot dF_{\tilde{x}}(x) \implies \text{Renewal Equation}$$

3. $L_m(r) \stackrel{?}{\longleftrightarrow} L_{\tilde{x}}(r)$ (Laplace Transform of \tilde{x})
(Laplace Transform of $m(t) = L_m(r)$)

Answer:

$$L_m(r) = \frac{L_{\tilde{x}}(r)}{r[1 - L_{\tilde{x}}(r)]}$$

<Homework> Prove it.

4. Asymptotic behavior of m(t):

$$\lim_{t \to \infty} \frac{m(t)}{t} = \lim_{t \to \infty} \frac{E[\tilde{n}(t)]}{t} = ?$$

Stopping Time (Rule)

Definition. \tilde{N} , an integer-valued r.v., is said to be a "stopping time" for a set of independent random variables $\tilde{x}_1, \tilde{x}_2, \ldots$ if event $\{\tilde{N} = n\}$ is independent of $\tilde{x}_{n+1}, \tilde{x}_{n+2}, \ldots$

Example 1.

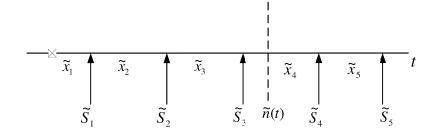
- Let $\tilde{x}_1, \tilde{x}_2, \ldots$ be independent random variables,
- $P[\tilde{x}_n = 0] = P[\tilde{x}_n = 1] = 1/2, \quad n = 1, 2, \dots$
- if $\tilde{N} = \min\{n : \tilde{x}_1 + \ldots + \tilde{x}_n = 10\}$
- \rightarrow Is \tilde{N} a stopping time for $\tilde{x}_1, \tilde{x}_2, \ldots$?

Answer:

Stopping Time (Rule)

Example 2.

- $\tilde{n}(t), X = {\tilde{x}_n, n = 1, 2, 3, \ldots},$
- $S = {\tilde{S}_n, n = 0, 1, 2, 3, \ldots},$
- $\bullet \ \tilde{S}_n = \tilde{S}_{n-1} + \tilde{x}_n$



 \rightarrow Is $\tilde{n}(t)$ the stopping time of $X = {\tilde{x}_n, n = 1, 2, ...}$?

Answer:

Stopping Time (Rule)

Example 3. Is $\tilde{n}(t) + 1$ the stopping time for $\{\tilde{x}_n\}$?

Answer:

Stopping Time - from \widetilde{I}_n

Definition. \tilde{N} , an integer-valued r.v. is said to be a stopping time for a set of independent random variables $\{\tilde{x}_n, n \geq 1\}$, if for each n > 1, \tilde{I}_n , conditional on $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{n-1}$, is independent of $\{\tilde{x}_k, k \geq n\}$

Define. \tilde{I}_n - a decision rule for stopping time $\tilde{N}, n \ge 1$ $\tilde{I}_n = \begin{cases} 1, & \text{if the } n_{th} \text{ observation is to be made;} \\ 0, & \text{Otherwise} \end{cases}$

- 1. \tilde{N} is the stopping time \tilde{I}_n depends on $\tilde{x}_1, \ldots, \tilde{x}_{n-1}$ but not $\tilde{x}_n, \tilde{x}_{n+1}, \ldots$
- 2. \tilde{I}_n is also an indicator function of event $\{\tilde{N} \geq n\}$, i.e., $\tilde{I}_n = \begin{cases} 1, & \text{if } \tilde{N} \geq n; \\ 0, & \text{Otherwise;} \end{cases}$

Stopping Time - from \widetilde{I}_n

Because

- If $\tilde{N} \geq n$, then n_{th} observation must be made;
- Since $\tilde{N} \ge n$ implies $\tilde{N} \ge n-1$ and happily, $\tilde{I}_n=1$ implies $\tilde{I}_{n-1}=1$

$$\begin{array}{l}
\therefore \text{ Stopping time} \\
\{\tilde{N} = n\}, \text{ is} \\
\underline{\text{or}} \\
\tilde{I}_n \text{ is}
\end{array}$$

Theorem. If $\{\tilde{x}_n, n \geq 1\}$ are i.i.d. random variables with finite mean $E[\tilde{x}]$, and if \tilde{N} is the stopping time for $\{\tilde{x}_n, n \geq 1\}$, such that $E[\tilde{N}] < \infty$. Then,

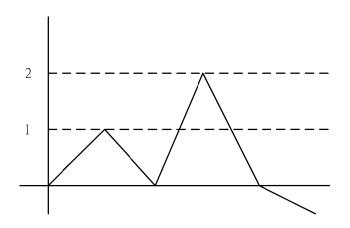
$$E\left[\sum_{n=1}^{\tilde{N}} \tilde{x}_n\right] = E[\tilde{N}] \cdot E[\tilde{x}]$$

Proof.

For Wald's Theorem to be applied, other than $\{\tilde{x}_i, i \geq 1\}$

- 1. \tilde{N} must be a stopping time; and
- 2. $E[\tilde{N}] < \infty$

Example. (Example 3.2.3 – Simple Random Walk, [Kao])



$$\{\tilde{x}_i\}$$
 i.i.d. with:
$$P(\tilde{x}=1)=p$$

$$P(\tilde{x}=-1)=1-p=q$$

$$\tilde{S}_n=\sum_{i=1}^n \tilde{x}_k$$

• Let $\tilde{N} = \min\{n | \tilde{S}_n = 1\}$

• Let $\tilde{M} = \min\{n | \tilde{S}_n = 1\} - 1$

Corollary

Before proving
$$\lim_{t\to\infty}\frac{m(t)}{t}\to \frac{1}{\bar{X}}$$
,

Corollary. If $\bar{X} < \infty$, then

$$E[\tilde{S}_{\tilde{n}(t)+1}] = \bar{X}[m(t)+1]$$

Proof.

The Elementary Renewal Theorem

Theorem.

$$\frac{m(t)}{t} \to \frac{1}{\bar{X}}$$
 as $t \to \infty$

Proof.

• Ensemble Average.

- to determine the expected renewal rate in the limit of large t, without averaging from $0 \to t$ (time average)

• Question.

- are there some values of t at which renewals are more likely than others for large t?



- An example. If each inter-renewal interval $\{\tilde{x}_i, i = 1, 2, ...\}$ takes on integer number of time units, e.g., 0, 4, 8, 12, ..., then expected rate of renewals is zero at other times. Such random variable is said to be "lattice".

- Definitions.

* A nonnegative random variable \tilde{x} is said to be *lattice* if there exists $d \geq 0$ such that

$$\sum_{n=0}^{\infty} P[\tilde{x} = nd] = 1$$

* That is, \tilde{x} is lattice if it only takes on integral multiples of some nonnegative number d. The largest d having this property is said to be the period of \tilde{x} . If \tilde{x} is lattice and F is the distribution function of \tilde{x} , then we say that F is lattice.

ullet Answer.

- Inter-renewal interval random variables are not lattice \Rightarrow uniform expected rate of renewals in the limit of large t. (Blackwell's Theorem)

Theorem. If, for $\{\tilde{x}_i, i \geq 1\}$, which are not lattice, then, for any $\delta > 0$,

$$\lim_{t \to \infty} [m(t+\delta) - m(t)] = \frac{\delta}{\bar{X}}$$

If the inter-renewal distribution is lattice with period d, then for any integer $n \geq 1$,

$$\lim_{n \to \infty} m(nd) = \frac{d}{\bar{X}} \qquad \text{(or } \lim_{t \to \infty} [m(t + nd) - m(t)] = \frac{nd}{\bar{X}})$$

Proof. (omitted)

For non-lattice inter-renewal process $\{\tilde{x}_i, i \geq 1\}$,

- 1. $\tilde{x}_i > 0 \Rightarrow \text{No multiple renewals (single arrival)}$
- 2. From Blackwell's Theorem, the probability of a renewal in a small interval $(t, t + \delta]$ tends to $\delta/\bar{X} + o(\delta)$ as $t \to \infty$,
 - \therefore Limiting distribution of renewals in $(t, t + \delta]$ satisfies

$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) = 1] = \frac{\delta}{\bar{X}} + o(\delta)$$

$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) = 0] = 1 - \frac{\delta}{\bar{X}} + o(\delta)$$

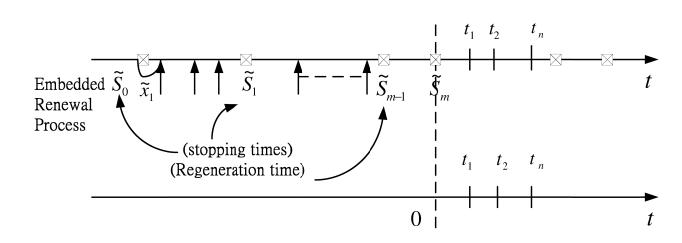
$$\lim_{t \to \infty} P[\tilde{n}(t+\delta) - \tilde{n}(t) \ge 2] = o(\delta)$$

\Rightarrow			
	single arrival	Stationary	Independent
		Increment	Increment
Poisson			
Renewal			
Process			
(Non-lattice)			

Regenerative Process

Regenerative Process

• $Z = {\tilde{Z}_t, t \ge 0}; \quad S = {\tilde{S}_n, n \ge 0}$ is a renewal process:



• Z is said to be a regenerative process if

$$E[f(\tilde{Z}_{\tilde{S}_m+t_1}, \tilde{Z}_{\tilde{S}_m+t_2}, \dots, \tilde{Z}_{\tilde{S}_m+t_n}) | \tilde{Z}_u; u \leq \tilde{S}_m]$$

Prof. Shun-Ren Yang, CS, NTHU

Regenerative Process

That is,

Let
$$\tilde{W}_t = f(\tilde{Z}_{t+t_1}, \tilde{Z}_{t+t_2}, \dots, \tilde{Z}_{t+t_n})$$
.
Let $\hat{\tilde{Z}}_u = \tilde{Z}_{T+u}$ ($\hat{\tilde{Z}}$ is the future process obtained from \tilde{Z} by taking $T = \tilde{S}_m$ as the time origin.)
$$\tilde{W}_T = f(\tilde{Z}_{T+t_1}, \dots, \tilde{Z}_{T+t_n})$$

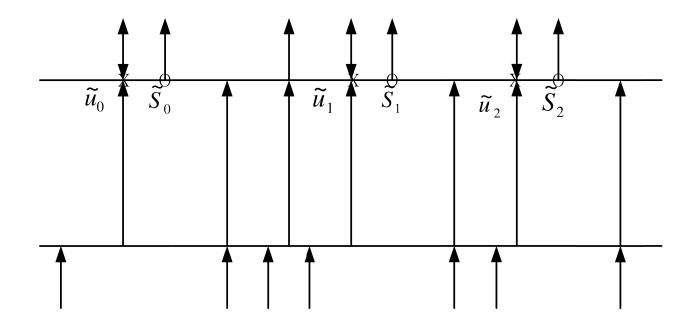
$$= f(\tilde{Z}_{t_1}, \dots, \tilde{Z}_{t_n}) = \hat{W}_0$$

Then, the regenerative property says:

- 1. $E[\hat{W}_0|Z_u; u < T] = E[\hat{W}_0] \rightarrow \text{Future process } \hat{Z} \text{ is independent of the past history before } T.$
- 2. $E[\hat{W}_0] = E[\hat{W}_0] \to \text{Probability law of } \hat{Z} \text{ is the same as that of } Z$

Regenerative Process

Example 1.



• Let $Z = {\tilde{Z}_t, t \geq 0}$, be the queue size at time t for a single sever queueing system, subject to Poisson process of arrivals and General i.i.d. service time distribution (M/G/1).

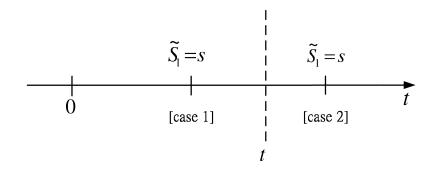
Regenerative Process

- $\underline{\text{Time origin}}$ = the instant of departure which left behind 0 customers;
- Then, Z is the regenerative process with regeneration time process $S = {\tilde{S}_n, n \ge 0}$ (shown as " \bigcirc ").
- That is, every time a departure occurs leaving behind an empty system, the future of Z after such a time has exactly the same probability law as the process Z starting at time 0.

Example 2.

- <u>Time origin</u> = the instant of departure leaving behind exactly one customers;
- Then, Z is the regenerative process with regeneration time process $u = {\tilde{u}_n, n \ge 0}$ (shown as "X").

- The main tool for studying regenerative processes in the absence of future properties
- To study $\tilde{Z}_t = i$ (e.g. number of customers in the system at time t = i)
 - $-g(t) = P[\tilde{Z}_t = i] = ? \text{ (pdf)}$
 - $-\lim_{t\to\infty} g(t) = ?$ (limiting pdf)
- Conditioning the event $\tilde{Z}_t = i$ on the time \tilde{S}_1 of the first generation,
 - \therefore Z is a regenerative process,
 - $\hat{Z} \stackrel{\triangle}{=} Z_{\tilde{S}_1+t}$ has the same probability law as Z



- Case 1: if $\tilde{S}_1 = s \leq t \Rightarrow$
- Case 2: if $\tilde{S}_1 = s > t \Rightarrow$?

- Solving $g(t) \longrightarrow \text{solving } h(t) \ (f_{\tilde{S}}(s) \text{ is known})$
- Solving $\lim_{t\to\infty} g(t) = ?$ (Key Renewal Theorem !!)

Example. Renewal function $m(t) = E[\tilde{n}(t)] = ?$

Question. How to remove the recursive relationship in the renewal-type equation?

Solution. Take Laplace transform and invert it.

Example 1.

- $X = {\tilde{x}_i}$ i.i.d. inter-arrival time, mean \bar{X} ,
- Recall: $E[\tilde{S}_{\tilde{N}(t)+1}] = \bar{X}[m(t)+1]$
- Prove it using Renewal-Type Equation and its solution.

Answer.

Example 2. Renewal function m(t)

$$m(t) = F(t) + \int_0^t m(t - x) f_{\tilde{x}}(x) dx$$

$$\downarrow$$

$$m(t) = F(t) + \int_0^t F(t - x) dm(x)$$

$$<$$
Question $> \lim_{t \to \infty} g(t) = ?$

Theorem. If $F_{\tilde{x}}$ is non-lattice, and if h(t) is directly Riemann integrable (i.e., $h(t) \geq 0$, non-increasing, $\int_0^\infty h(t)dt < \infty$), (integrable with respect to time exists), then,

$$\lim_{t \to \infty} g(t) = \lim_{t \to \infty} \int_0^t h(t - x) dm(x)$$

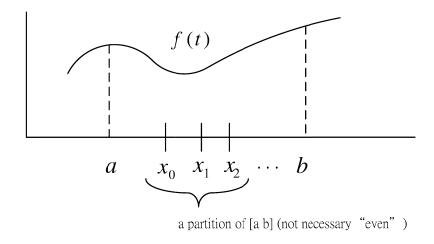
$$= \frac{1}{\bar{X}} \int_0^\infty h(t) dt$$
where
$$m(x) = \sum_{n=1}^\infty F_n(x)$$

$$\bar{X} = \int_0^\infty \bar{F}(x) dx$$

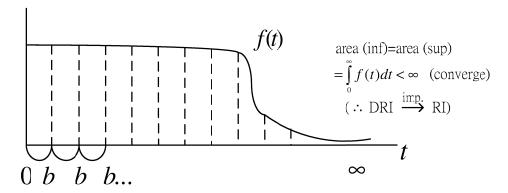
Proof. (omitted)

Note. Riemann Integral and Directly Riemann Integrable

1. Riemann Integral (RI)



2. Directly Riemann Integrable (DRI)



Definition. f(t), defined on $[0, \infty]$, is said to be D.R. Integrable, (defined as $f \in D$), for every b > 0, $\overline{m}_n(b)$ and $\underline{m}_n(b)$ be the sup and inf of f(t), i.e.,

$$\overline{m}_n(b) = \sup\{f(t) : nb \le t < (n+1)b\}$$

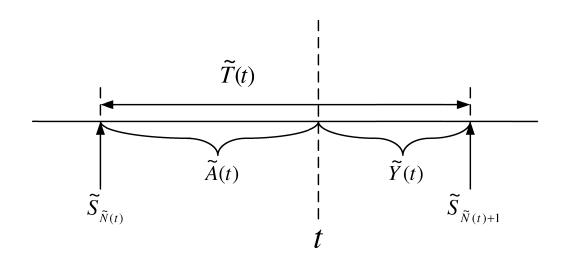
$$\underline{m}_n(b) = \inf\{f(t) : nb \le t < (n+1)b\}$$

if

$$\sum_{n=0}^{\infty} \overline{m}_n(b)$$
 and $\sum_{n=0}^{\infty} \underline{m}_n(b)$ are finite, and

$$\lim_{b \to 0} b \cdot \sum_{n=0}^{\infty} \overline{m}_n(b) = \lim_{b \to 0} b \cdot \sum_{n=0}^{\infty} \underline{m}_n(b) = \int_0^{\infty} f(t)dt < \infty$$

- Sufficient conditions for an f(t) to be D.R. Integrable
 - 1. $f(t) \ge 0 \quad \forall t$
 - 2. f(t) non-increasing
 - $3. \int_0^\infty f(t)dt < \infty$



- For time t,
 - $-\tilde{Y}(t) = \tilde{S}_{\tilde{N}(t)+1} t$ (Residual Life, Excess life, Forward recurrence time)
 - $-\tilde{A}(t) = t \tilde{S}_{\tilde{N}(t)}$ (Age, Current life, Backward recurrence time)
 - $-\tilde{T}(t) = \tilde{Y}(t) + \tilde{A}(t) = \tilde{x}_{\tilde{N}(t)+1}$ (life, spread, recurrence time)

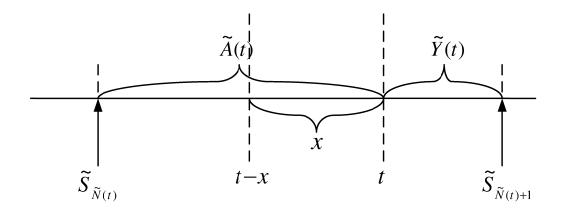
To find: $(\tilde{Y}(t))$

- $F_{\tilde{Y}(t)}(x) = ? (\bar{F}_{\tilde{Y}(t)}(x) = ?)$ (Renewal-Type Equation & solution)
- $\lim_{t\to\infty} F_{\tilde{Y}(t)}(x) = ?$ (Key Renewal Theorem)
- $\lim_{t \to \infty} E[\tilde{Y}(t)] = ? (F_{\tilde{Y}(t)})$

$$\lim_{t \to \infty} E[\tilde{Y}(t)] = \lim_{t \to \infty} \int_0^\infty \bar{F}_{\tilde{Y}(t)}(x) dx$$

To find: $(\tilde{A}(t))$

•
$$F_{\tilde{A}(t)}(x) = ? (\bar{F}_{\tilde{A}(t)}(x) = ?)$$



Notice that:

- $\tilde{A}(t) > x \Leftrightarrow$
- $P(\tilde{A}(t) > x) = 0$, where

<Homework>

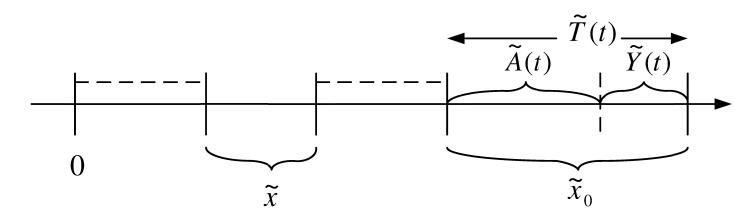
- 1. Find $\lim_{t\to\infty} F_{\tilde{A}(t)}(x) = ?$
- 2. Find $\lim_{t\to\infty} E[\tilde{A}(t)] = ?$

To find: $\tilde{T}(t)$

- $\bullet \ F_{\tilde{T}(t)}(x) = ?$
- $\lim_{t \to \infty} F_{\tilde{T}(t)}(x) = ?$

< Homework. > Find $\lim_{t\to\infty} E[\tilde{T}(t)] = ?$

The Inspection Paradox



$$\tilde{T}(t) = \tilde{S}_{\tilde{N}(t)+1} - \tilde{S}_{\tilde{N}(t)} = \tilde{X}_{\tilde{N}(t)+1} \stackrel{\Delta}{=} \tilde{x}_0$$

From above, we get:
$$F_{\tilde{x}_0}(x) = \frac{1}{E[\tilde{x}]} \cdot \int_0^x y \cdot dF_{\tilde{x}}(y)$$

From definition, we get:
$$F_{\tilde{x}}(x) = \int_0^x dF_{\tilde{x}}(y)$$

Why
$$F_{\tilde{x}_0}(x) \neq F_{\tilde{x}}(x)$$
?

.....

The Inspection Paradox

- ullet That is, the length of the renewal interval containing t is stochastically greater than the length of an ordinary renewal interval
 - If you drop a point to a segmented time line, the segment that the point falls into should be larger than other segments
 - "Inspection paradox" [Ref. Ross, P.118-Remark]

Application 2 : Alternating Renewal Process

What is the distribution of $\tilde{S}_{\tilde{N}(t)}$, i.e., the time of the last renewal prior to (or at) time t (will be used later)?

Lemma.

$$P[\tilde{S}_{\tilde{N}(t)} \le s] = \bar{F}_{\tilde{x}_1}(t) + \int_0^s \bar{F}_{\tilde{x}_1}(t-y)dm(y), \ s \le t$$

Proof.

Application 2 : Alternating Renewal Process

Note: From the previous lemma, we get:

$$P[\tilde{S}_{\tilde{N}(t)} = 0] = \bar{F}_{\tilde{x}_1}(t)$$

$$dF_{\tilde{S}_{\tilde{N}(t)}}(y) = \bar{F}_{\tilde{x}_1}(t - y)dm(y)$$

↓ reasoning

$$dF_{\tilde{S}_{\tilde{N}(t)}}(y) = f_{\tilde{S}_{\tilde{N}(t)}}(y)dy$$

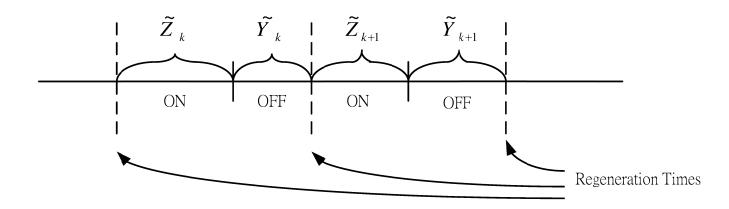
$$=$$

Application 2 : Alternating Renewal Process

↓ To prove:

Alternating Renewal Theory (Conditioning on $\tilde{S}_{\tilde{N}(t)}$)

Alternating Renewal Processes



$$\{(\tilde{Z}_k, \tilde{Y}_k), k \ge 1\}$$
 are i.i.d.

 $\Rightarrow \text{Alternating Renewal Processes} \begin{cases} \tilde{Z}_i \sim F_{\tilde{Z}}(t) \\ \tilde{Y}_i \sim F_{\tilde{Y}}(t) \\ \tilde{Z}_i + \tilde{Y}_i \sim F_{\tilde{X}}(t) \end{cases}$

Theorem. If $E[\tilde{Z}_n + \tilde{Y}_n] < \infty$, and $F_{\tilde{Z}_n + \tilde{Y}_n}$ is non-arithmetic, then

$$\lim_{t \to \infty} P[\text{system is "ON" at time } t] \stackrel{\Delta}{=} \lim_{t \to \infty} P(t) = \frac{E[Z_n]}{E[\tilde{Z}_n] + E[\tilde{Y}_n]}$$

Alternating Renewal Processes

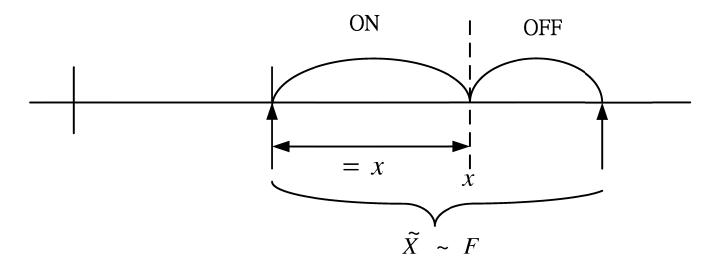
Proof.

Applications of the Alternating Renewal Theory

Computation of the distributions of $\tilde{A}(t)$, $\tilde{Y}(t)$, and $\tilde{T}(t)$, i.e.,

$$\lim_{t\to\infty} P[\tilde{A}(t) \le x] = ? (\lim_{t\to\infty} P[\tilde{Y}(t) \le x] = ?) (\lim_{t\to\infty} P[\tilde{T}(t) \le x] = ?)$$

- 1. Let an on-off cycle correspond to a renewal interval.
 - The system is "on" at time t if the age at t is less or equal to x, i.e., "on" the first x units of a renewal interval.



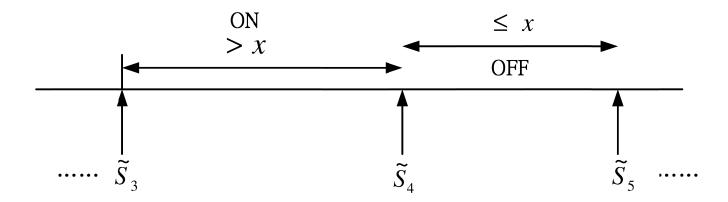
Applications of the Alternating Renewal Theory

2.

$$\lim_{t \to \infty} P[\tilde{Y}(t) \le x] = \lim_{t \to \infty} P[\text{"OFF" at } t]$$

Applications of the Alternating Renewal Theory

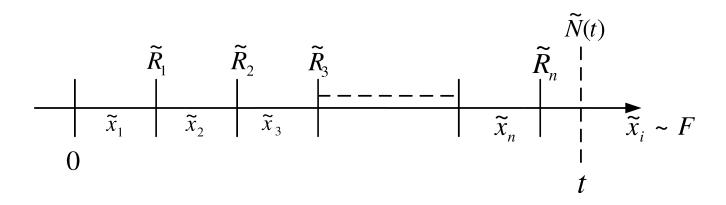
3. Consider $\begin{cases} \text{cycle time } \tilde{x} > x \to \text{"ON"} \\ \text{cycle time } \tilde{x} \le x \to \text{"OFF"} \end{cases}$



Application 3 : Compute $E[ilde{Y}(t)]$ by conditioning $ilde{S}_{ ilde{N}(t)}$

$$E[\tilde{Y}(t)] = E[\tilde{Y}(t)|\tilde{S}_{\tilde{N}(t)} = 0] \cdot \bar{F}(t) + \int_{0}^{t} E[\tilde{Y}(t)|\tilde{S}_{\tilde{N}(t)} = y]\bar{F}(t-y)dm(y)$$

Renewal Reward Process and Applications



- $\tilde{R}_n \stackrel{\Delta}{=}$ the reward earned at the time of the n_{th} renewal;
- $\tilde{R}_n \geq 0$, for all n;
- $\{\tilde{R}_n, n \geq 1\}$ are i.i.d., with mean $E[\tilde{R}]$;
- \tilde{R}_n may depend on \tilde{x}_n ;
- $\therefore \{(\tilde{R}_n, \tilde{x}_n), n \geq 1\}$ i.i.d. random variables;
- Let $\tilde{R}(t) = \sum_{n=1}^{\tilde{N}(t)} \tilde{R}_n \stackrel{\Delta}{=}$ the total reward earned by t

Renewal Reward Process and Applications

Theorem. If $E[\tilde{R}] < \infty$, $E[\tilde{x}] < \infty$, then

1.

$$\frac{\tilde{R}(t)}{t} \to \frac{E[\tilde{R}]}{E[\tilde{x}]} \text{ w.p.1 as } t \to \infty$$

i.e., long-run average reward =

2.

$$\frac{E[\tilde{R}(t)]}{t} \to \frac{E[\tilde{R}]}{E[\tilde{x}]} \text{ as } t \to \infty$$

i.e., expected long-run average reward =

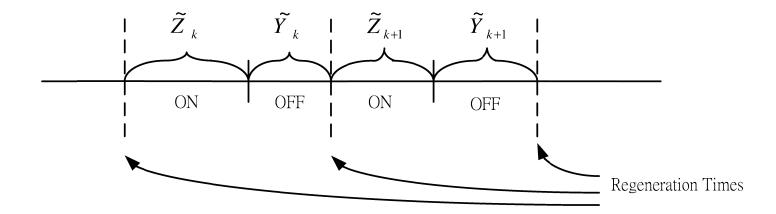
Renewal Reward Process and Applications

Note: The Renewal Reward Theorem says that:

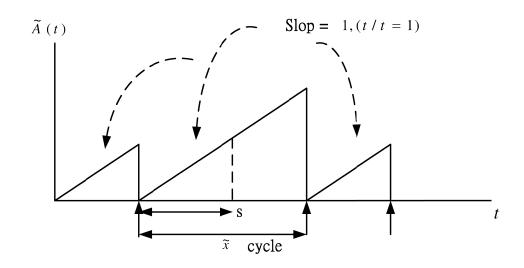
$$\frac{\tilde{R}(t)}{t} \to \frac{E[\tilde{R}]}{E[\tilde{x}]} \text{ w.p.1 as } t \to \infty, \text{ i.e., } \lim_{t \to \infty} \underbrace{\sum_{n=1}^{\tilde{N}(t)} \tilde{R}_n}_{\text{Time Average}} = \frac{E[\tilde{R}]}{E[\tilde{x}]}$$

. The long-run average reward

Application # 1 : (Alternating Renewal Processes)

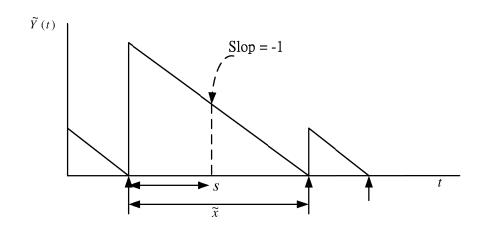


Application # 2 : (Time Avg. of Age and Residual life)



To find
$$\lim_{t \to \infty} \frac{\int_0^t \tilde{A}(s)ds}{t} = 0$$

Application # 2 : (Time Avg. of Age and Residual life)



To find
$$\lim_{t\to\infty} \frac{\int_0^t \tilde{Y}(s)ds}{t} = ?$$
 Note that $\tilde{Y}(s) = \tilde{x} - s$.

Application # 3 : The Little's Formula – Part I

- A G/G/1 queueing server:
 - Let X_1, X_2, \ldots denote the interarrival times between customers; and let Y_1, Y_2, \ldots denote the service times of successive customers. We shall assume that

$$E[Y_i] < E[X_i] < \infty$$

• Suppose that the first customer arrives at time 0 and let n(t) denote the number of customers in the system at time t. Define

$$L = \lim_{t \to \infty} \int_0^t n(s) ds / t$$

• Imagine that a reward is being earned at time s at rate n(s). If we let a cycle correspond to the start of a busy period, then the process restarts itself each cycle.

Application # 3 : The Little's Formula – Part I

• As L represents the long-run average reward, it follows from the Renewal Reward Theorem that

$$L =$$

Application # 3 : The Little's Formula – Part II

• Let W_i denote the amount of time the *i*th customer spends in the system and define

$$W = \lim_{n \to \infty} \frac{W_1 + \dots + W_n}{n}$$

• Let N denote the number of customers served in a cycle, then W is the average reward per unit time of a renewal process in which the cycle time is N and the cycle reward is $W_1 + \cdots + W_N$, and, hence,

$$W =$$
 $-$

Application #3: The Little's Formula – Part III

Theorem. Let $\lambda = 1/E[X_i]$ denote the arrival rate. Then

$$L = \lambda W$$

Proof.

Application #3: The Little's Formula – Part III

Remarks

• The Little's Formula states that

• By replacing "the system" by "the queue" the same proof shows that

• By replacing "the system" by "service" we have that

Regenerative Processes

a cycle \widetilde{S}_{5} $E[\widetilde{x}]$ $\widetilde{x} \sim F, E[\widetilde{x}]$

Stochastic process $Z = {\tilde{Z}(t), t \geq 0}$ with state space $S = {0, 1, 2, ...}$ is called a *regenerative process* if the regenerative property holds.

Theorem. If $E[\tilde{x}] < \infty$

$$\lim_{t\to\infty} P[\tilde{Z}(t)=j] = \frac{E[\text{amount of time in state } j \text{ in a cycle}]}{E[\text{cycle length}]}$$

$$= \frac{\int_0^\infty P[\tilde{Z}(t)=j, \tilde{x}_1>t]dt}{E[\tilde{x}]}$$

Regenerative Processes

Proof.

Regenerative Processes

Theorem. For a regenerative process with $E[\tilde{x}_1] < \infty$, with probability 1,

$$\lim_{t \to \infty} \frac{[\text{time in } j \text{ during } (0, t)]}{t} = \frac{E[\text{time in state } j \text{ during a cycle}]}{E[\text{time of a cycle}]}$$

Proof.

Homework. to be announced on the web

- We often consider a counting process for which the first interarrival time has a different distribution from the remaining ones.
- For instance, we might start observing a renewal process at some time t > 0. If a renewal does not occur at t, then the distribution of the time we must wait until the first observed renewal will not be the same as the remaining interarrival distributions.
- Formally, let $\{X_n, n = 1, 2, ...\}$ be a sequence of independent nonnegative random variables with X_1 having distribution G, and X_n having distribution F, n > 1. Let $S_0 = 0$, $S_n = \sum_{1}^{n} X_i$, $n \ge 1$, and define

$$N_D(t) = \sup\{n : S_n \le t\}.$$

• **Definition.** The stochastic process $\{N_D(t), t \geq 0\}$ is called a *general* or a *delayed* renewal process.

• When G = F, we have, of course, an ordinary renewal process. As in the ordinary case, we have

$$P\{N_D(t) = n\} =$$

• Let $m_D(t) = E[N_D(t)]$. Then it is easy to show that

$$m_D(t) =$$

and by taking transforms, we obtain

$$\tilde{m}_D(s) =$$

By using the corresponding result for the ordinary renewal process, it is easy to prove similar limit theorems for the delayed process. Let $\mu = \int_0^\infty x dF(x)$.

Proposition.

1. With probability 1,

$$\frac{N_D(t)}{t} \to \frac{1}{\mu}$$
 as $t \to \infty$

2.

$$\frac{m_D(t)}{t} \to \frac{1}{\mu}$$
 as $t \to \infty$

3. If F is not lattice, then

$$m_D(t+a) - m_D(t) \to \frac{a}{\mu}$$
 as $t \to \infty$

4. If F and G are lattice with period d, then

$$E[\text{number of renewals at } nd] \to \frac{d}{\mu}$$
 as $n \to \infty$

5. If F is not lattice, $\mu < \infty$, and h directly Riemann integrable, then

$$\int_0^\infty h(t-x)dm_D(x) \to \int_0^\infty h(t)dt/\mu$$

• In the same way we proved the result in the case of an ordinary renewal process, it follows that the distribution of the time of the last renewal before (or at) t is given by

$$P\{S_{N(t)} \le s\} =$$

• When $\mu < \infty$, the distribution function

$$F_e(x) =$$

is called the equilibrium distribution of F. Its Laplace transform is given by

$$\tilde{F}_e(s) = \int_0^\infty e^{-sx} dF_e(x)$$

- The delayed renewal process with $G = F_e$ is called the *equilibrium* renewal process and is extremely important.
- For suppose that we start observing a renewal process at time t. Then the process we observe is a delayed renewal process whose initial distribution is the distribution of Y(t) (i.e., residual life). Thus, for t large, it follows that the observed process is the equilibrium renewal process.

Let $Y_D(t)$ denote the residual life at t for a delayed renewal process.

Theorem. For the equilibrium renewal process:

- 1. $m_D(t) = t/\mu$
- 2. $P\{Y_D(t) \le x\} = F_e(x)$ for all $t \ge 0$
- 3. $\{N_D(t), t \ge 0\}$ has stationary increments

Proof.