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Distribution and Limiting Behavior of 7(¢)

2103

1(t)

A(0)+]

{Zn,mn=1,2,...} ~ Fz; mean X (0 < X < c0)
N = {n(t),t > 0} is called a renewal (counting) process

i(t) = sup{n:S, <t} (. There are always finite renewals

= max{n . S, < t} in a finite time (i.e., n(t) < 00))
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Distribution and Limiting Behavior

of n(t)

n

(?)

1. pmf of n(t) — closed-fori

2. Limiting time average |L

11

aw of Large Number

'fl(t) w,p\,l 1

s

=, 1 — 00
t X
3. Limiting time and ensemble average
[Elementary Renewal Theorem]:
Eln(t)] wp1 1
» =, t— 00
t X
[tems 2 and 3 — Ergodic Theory
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Distributic

)n and Limiting

J Behavior of »

(1)

4. Limiting €
[Blackwell

5. Limiting |

nsemble average (foc
’s Theorem]:

Elii(t + 6) -

using on arrivals in

fl(t)] w.p\.l 1

t —

3
°DF of n(t) [Central

X ?

Limit Theorem]:

the vicinity of ¢ )

. n(t) —t/X N T ot .
lim P — <yl = / ——e 2 dx ~ Gaussian T,U\/E-X
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— P[At) > n+1]

— P[Sp41 < ]
C i~ F
LY B~ F)@F(t)...Q F(t) = Fy(t)
+1(t) n-fold convolution of F'(t)
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Limiting Time Average

lim n(t) =7

t—oo

P llim n(t) < oo] = P [n(o0) < oo] = P |Z, = oo for some n)|

:P[U(:}En:oo)] :ZP[:&n:oo]zo

L lim n(t) =n(oco) =00 w.p.l
t—o0

Question: What is the rate at which n(t) goes to co ?

n(t)

v 1.€. 'lim—n(t) =7
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Strong Law for Renewal Processes

Theorem. For a renewal process N = {n(t),t > 0} with mean inter-
renewal interval X, then
n(t) 1

' = — Dp.1
t]iglo t X’wp

Proof.

Prof. Shun-Ren Yang, CS, NTHU 8



Central Limit Theorem for 7.(¢)

Theorem. Assume that the inter-renewal intervals for a renewal process
N = {n(t),t > 0} have finite mean and variance X, 2. Then,

9

_ X
n(t) —t/ X 1 vy | ==
lim P nlt) — b/ <y :—/ e 2 dx
t—00 t \/27’(‘ —00
O- E——
i X3 i

Proof. (idea: n(t) — Sz — CLT)
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Renewal Function £

()]

Let m(t) = E[n(t)], which is

called “renewal func

1. Relationship between m(t) and F,

m(t) = 2_: F(2),

where F;, is the n-

2. Relationship between m(t) and F

[Renewal Equation]

m(t)

3. Relationship between m(

F(t)+/0tm(t—ac

tion’ .

fold convolution of F

\dF(x)

t) and Lz(r) (Laplace Transform of )

__ La(r)
En(") = S 1)

|
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Renewal Function £

(1)

— [Wald’s Equation]

4. Asymptotic behavior of
— |Elementary Renewal
— |Blackwell’s Theorem]

n(t) (t — oo, Limitir
Theorem)|
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Renewal Function E|n(t)]

l?

1. m(t) = E[n(t)] —— F, (i.e., PDF of S,,)

1, mng renewal occurs in [0, t];
here I,, =

© @)
Let n(t) =Y I, w
nz::l " 0, Otherwise;

N
™~
N—’

= Eli(t)] = E [i In-

n=1 i

I
WK
2

]

S
I
[

[
WK
!

S
I
[

]

I
WK
!

S
|
—_
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Renewal Function E|n(t)]

As t — oo, n — oo, finding Fj, is far too complicated

= find another way of solving n

1(t) in terms of Fj(t)

Prof. Shun-Ren Yang, CS, NTHU
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Renewal Function E|n(t)]

) (i.e., PDF of )

rt
| = | P[S, <t—
0

&1 = 51, P[S; <]

SP[S’nSt]:Fj()

=1

= (1) + /Ot m(t — x)

1+ x,, foralln >1

, and gn_l and x,, are independent,
x|dF;(x), for n > 2

_F,,

/ZP n1<t—£I}]dF~()

-dF;(x) = Renewal Equation
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Renewal Functio

n Eln(t)]

?

3. Ly (r) «— Lz(r) (Laplace Transform of

Answer:

<Homework> Prove it.

4. Asymptotic behavior of m(t):

(Laplace Transform of

B La} 7“)
L) = T L
im ™ _ g RO,
t—oo ¢ t—o0 t
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Stopping Time (Rule)

Definition. N, an integer-v:
a set of independent ranc
independent of T, 1, Ty

Example 1.
e Let x1,x9,... be inde;
e Plz,=0]=Plz,=1
e if N =min{n: & +.
— Is N a stopping time

Answer:

1lued r.v., is said to |

lom variables x1, Zo, ...

Dy e e

pendent random vari

|=1/2, n=12,...

L+ Fp = 10}

for fl,ij‘g, LT

be a “stopping time” for

if event {N =n} is

ables,
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Stopping Time (Rule)

Example 2.
e n(t), X ={2,,n=1,2,3,...},
e S=1{5,,n=0,1,2,3,...},

® S, =51+ Ty

— Is n(t) the stopping time of X = {z,,n=1,2,...}7

Answer:

Prof. Shun-Ren Yang, CS, NTHU 17



Stopping Time (Rule)

Example 3. Is n(t) + 1

Answer:

| the stopping time f

or {T,}7?

Prof. Shun-Ren Yang, CS, NTHU
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Stopping

Time - from I,

Definition.

set of ind

conditional on Z1, 2, .

Define. I~n -
1

0

~

n

1. " N is the stopping time
y fn depends on 1, ..

~

2.

l.e.,

N, an integer-valued

L,

~

a decision rule for st

, if the nyj, observat

,  Otherwise

-,w"’

1, if N> n;
0, Otherwise;

ependent random variables {Z,,n > 1}, i
.., Tn—1, is independent of {

r.v. is said to be a s

opping time N ,T >

ion is to be made;

I,, is also an indicator function of event {N > n},

topping time for a

,— 1 bUt IlOt i‘rn” ji.n_|_17 .« o

~

f for eachn > 1, I,,
T,k >n}
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Stopping Time - from I,

Because

o If N > n, then nyy,

e Since N > n implie
I,_1=1

. Stopping time
( ~
{N =n}, is

observation must be
s N > n — 1 and hag

made;

~

pily, I, = 1 implies

Prof. ¢
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Wald’s Equation

Theorem. If {z,,n > 1} are i.i.d. random variables with finite mean
E[z], and if N is the stopping time for {#,,n > 1}, such that

~

FE|N] < oo. Then,

E ) &,| = E[N]- E[z]

Proof.

Prof. Shun-Ren Yang, CS, NTHU 21



Wald’s Equation

For Wald’s Theorem to be applied, other than {Z;,7 > 1}

1. N must be a stopping time; and

~

2. F[N] < o0

Prof. Shun-Ren Yang, CS, NTHU 22



Wald’s Equation

Example. (Example 3.2.3 — Simple Random Walk, [Kao])

(Z;} iid. with:  P(E=1)=p

Prof. Shun-Ren Yang, CS, NTHU 23



Wald’s Equation

e Let N = min{n|S, =1}

Prof. Shun-Ren Yang, CS, NTHU 24



Wald’s Equation

e Let M = min{n|

Sn

1} —1

Prof. Shun-Ren Yang, CS, NTHU
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Corollary

Before proving lim
t—o00

m(t)

Corollary. If X < oo, then

Proof.

E

Prof. ¢
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The Elementary Renewal Theor

em

Theorem.

Proof.

m(t)

asS

t — o0

Prof. Shun-Ren Yang, CS, NTHU
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Blackwell’s Theo

rem

e Ensemble Averag

— to determine the
without averagin

e Question.

— are there some v

others for large ¢

c.

)

expected renewal ra
g from 0 — ¢ (time ¢

alues of t at which r¢

te in the limit of large ¢,
werage)

‘newals are more likely than

— An example. I
on Integer nun
expected rate
variable is saic

t +8

t each inter-renewal |
nber of time units, e.
of renewals is zero af
1 to be “lattice”.

t +12

interval {Z;,i =1,2,...} takes
g.,0,4,8,12,..., then
, other times. Such random

Prof. Shun-Ren Yang, CS, NTHU 28



Blackwell’s Theorem
— Definitions.
x A nonnegative random variable x is said to b
exists d > 0 such that
:Z Plz=nd =1
n=0

x Tha
noni
to b
func

e Answer.

— Inter-r

= unl
(Black

negative number d. ']

t is, x is lattice if it

e the period of x. If
tion of T, then we s3

enewal interval rand
form expected rate o
well’s Theorem)

only takes on integrs
['he largest d having

T is lattice and F' is
y that F'is lattice.

om variables are not
f renewals in the lim

e lattice if there

1 multiples of some

this property is said
the distribution

lattice
it of large t.
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Blackwell’'s Theorem

Theorem. If, for {Z;,7 > 1}, which are not lattice, then, for any § > 0,

, _ Y
tlggo[m(t +40) —m(t)] = <

If the inter-renewal distribution is lattice with period d, then for any
integer n > 1,

.‘ d , . nd
lim_ m(nd) = b (or tlgélo[m(t +nd) —m(t)] = 7)

Proof. (omitted)

Prof. Shun-Ren Yang, CS, NTHU 30



Blackwell’'s Theorem

For non-lattice inter-renewal process {Z;,7 > 1},
1. .~ Z; > 0 = No multiple renewals (single arrival)

2. From Blackwell’s Theorem, the probability of a renewal in a small
interval (¢,t + 8] tends to 6/X + o(d) as t — oo,

.. Limiting distribution of renewals in (¢, ¢ + 6] satisfies

Tim Pla(t + ) — a(t) = 1] = % +0(5)
lim Pli(t +6) —a(t) = 0] = 1 - % + 0(4)
lim P[A(t 4+ 6) — a(t) > 2] = o(6)

t—00

Prof. Shun-Ren Yang, CS, NTHU



Blackwell’s Theo

rem

—
single arrival | Stationary | Independent
Increment | Increment
Poisson
Renewal
Process

(Non-lattice)
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Regenerative Process

Regenerative Proce

>SS

o 7 ={Z;,t>0

S = {S'mn > 0}

is a renewal process;

I
— - x S B S S

Embedded S, 7 T T S T____TS 1 %; t

Renewal ! " "

Process /' / :

— (stopping times) PP
(Regeneration time) | 2

|
— -
|

e / is said to be

E [f(ng‘Ftl ? ng+t

s
P

a regenerative process if

Prof. Shun-Ren Yang, CS, NTHU
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Regenerative Process

That is,

Let Wt — f(ZH—tu Zt—l—tw
Let Z, = ZT+u (Z is tl
by tal

~

W

Then, the regenerative p

1. EWy|Zy;u<T)=E
the past history befor

2. E[WQ} — E[Wo] — P1

s Dt ).
1e future process obt

~

cing 1T'=5,,, as the t

F(Zrieys -
f(Zy,,... 2

o
I

roperty says:

(W] — Future proc
el

‘obability law of 7 i

ained from Z

ime origin.)

y N\
T+t )
— VVO

ess 7 is independent of

the same as that of Z

Prof. ¢
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Regenerative Process

Example 1.

Pt—

R
o Let Z ={Z,,t >0}, be the queue size at time t for a single sever

queueing system, subject to Poisson process of arrivals and General
i.i.d. service time distribution (M/G/1).

Prof. Shun-Ren Yang, CS, NTHU 35



Regenerative Process

e Time origin = the ins

customers;

e Then, Z is the regene
S = {S,,n >0} (shoy

e That is, every time a
system, the future of
probability law as the

Example 2.

e Time origin = the ins

customers;

e Then, Z is the regene
u = {Up,n > 0} (sho

vn as “()”).

v as “X7).

tant of departure which left behind 0

rative process with regeneration time process

departure occurs leaving behind an empty
Z after such a time has exactly the same
process Z starting at time 0.

tant of departure leaving behind exactly one

rative process with regeneration time process

Prof. Shun-Ren Yang, CS, NTHU 36



Renewal Theory

e The main tool for st
future properties

o To study Z, =i (e.g.

— g(t) = P[Z; = i]
— lim ¢g(t) =7 (lin

t—00

e Conditioning the ev
/18

WA

udying regenerative

number of custome

=7 (pdf)
1iting pdf)

ent Z; = 1 on the tin
a regenerative proce

7

§,4++) has the sam

Y]

processes in the absence of

s in the system at time t = 1)

1e Sp of the first generation,

SS,

e probability law as Z

[a

[
[
[
[
[
|
[case 1] :
[

4

i J

Prof. Shun-Ren Yang, CS, NTHU 37



Renewal Theory

— Case 1: if S =s<t=

— Case 2: if Sy =s>t= ?

e Solving g(t) — solving h(t) (fz(s) is known)

e Solving lim ¢(t) =7 (Key Renewal Theorem !!)

t—0o0

Prof. Shun-Ren Yang, CS, NTHU 38



Renewal Theory

Example. R

enewal function m(¢

= E[a(t)] =7

Prof. Shun-R

en Yang, CS, NTHU
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Renewal Theory

Question. How to remove the recursive relationship in the renewal-type
equation?

Solution. Take Laplace transform and invert it.

Prof. Shun-Ren Yang, CS, NTHU 40



Renewal Theory

Example 1.
e X = {#;}iid. inter-arrival time, mean X
e Recall: E[Sﬁ(t)ﬂ] = X[m(t) + 1]

e Prove it using Renewal-Type Equation and its solution.

~»

Answer.

Prof. Shun-Ren Yang, CS, NTHU 41



Renewal Theory

Example 2. Renewal function m/(t)

m(t) =F(t)+ | m(t —x)fz(z)dx

m(t) =F({t)+ | F(t—z)dm(x)

<Question> lim g(t) =7

t—00

Prof. Shun-Ren Yang, CS, NTHU 42



Key Renewal

Theorem

Theorem. If Fj is
(i.e., h(t) > 0,

respect to time
then,

Proof. (omitted)

3 non-lattice, and if /
®.@)
non-increasing, / J
0

> exists),

lim g(t) = lim

t—00 {— X

where m (2

1(t) is directly Riemann integrable

h(t)dt < o0), (integrable with

D

t
h(t — z)dm(x)
0

/0 h(t)dt

)

=2 Fulw)

n=1

/OOO F(z)dx

Prof. Shun-Ren Yang, CS, NTHU
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Key Renewal Theorem

Note. Riemann Integral and Directly Riemann I

1. Riemann Integral (RI

T

N——"

ntegrable

a partition of [a b] (not necessary “ev

2. Directly Riemann Integrable (DRI)

J©

5

oo

- )

a (sup)

= T f(t)dt < (converge)

area (inf)=are
L
[
[ : mnip.
L (. DRI > RD
N

Prof. Shun-Ren Yang, CS, NTHU
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Key Renewal Theorem

Definition. f(t), defined on [0, o], is said to be D.R. Integrable, (defined

as f € D), for every

f(t), i.e.,
mp
my
if
oo
n=0
oo

(b) = sup{f(t) : nb <
(b) = inf{f(t) : nb <

b > 0, m,(b) and m,,(b) be the sup and inf of

t < (n+1)b}

<t < (n+1)b}

are finite, and

Prof. Shun-Ren Yang, CS, NTHU
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Key Renewal Theorem

e Sufficient conditions for :

i f(t) to be D.R. In

itegrable

Prof. ¢

Shun-Ren Yang, CS, NTHU
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Application 1 :

R

esidual Life, A

ge, and Total Life

e For time ¢,

— Y(t) = Sxa

time)
— A(t)=t—Sg
~ Tt =Y(t)+

(1)
Al

-t (Residual Life, Ex

(Age, Current life, b

t) = TR ()41 (life, sp

.
Y
Y (1)

S

N(1)+1

cess life, Forward recurrence

backward recurrence time)

read, recurrence time)

Prof. Shun-Ren Yang, CS, NTHU 47



Application 1 : Residual Life, A

ge, and Total Life

To find: (Y (¢))

)

t—00

o lim E[Y(t)] =?

t-—00

) () =7) (Renewal-"

(Key Renewal Theor

e f/(t)>

['ype Equation & solution)

rem )

Prof. Shun-Ren Yang, CS, NTHU
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Application 1 : Residual Life, Age, and Total Life

lim E[Y(t)] = lim Fy () da

t—00 t—oo Jo

Prof. Shun-Ren Yang, CS, NTHU 49



Application 1

: Residual Life, Age,

and Total Life

To find: (A(t))

o Fip(x) =" (Fjy(x)=7)

|
| LT |
|
| /\lL \'/’_/N
| X
| |
~ - ¢ -
Sﬁ(t) i ]V(z)+1
Notice that :
( ) > I =
. P(fl( t) > x) =0, where
Prof. Shun-Ren Yang, CS, NTHU 50



Application 1 : Residual Life, Age, and Total Life

<Homework>

L. Find lim Fg (x) =7

t—00

2. Find lim E[A(t)] =?

t—00

Prof. Shun-Ren Yang, CS, NTHU 51



Application 1 : Residual Life, A

ge, and Total Life

To find: T(t)

t—00

Prof. Shun-Ren Yang, CS, NTHU
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Application 1

: Residual Life, Age, and Total Life

<Homework.> F

ind lim E|T(t)] =7

t—00

~

Prof. Shun-Ren Yang, CS, NTHU
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The Inspection Paradox

T(t) — SN(t)—i—l - S~(t)

From above, we get: Fz, (x) =

From definition, we get: Fjz(x) =

. Shun-Ren Yang, CS, NTHU



The Inspection Paradox

e That is, the length
stochastically greate

of the renewal interv
r than the length of

— If you drop a poi
point falls into s

— “Inspection para

Int to a segmented ti
hould be larger than

dox” |Ref. Ross, P.1

al containing t is

an ordinary renewal interval

me line, the segment that the
other segments

18-Remark]

Prof. Shun-Ren Yang, CS, NTHU 55



Application 2 : Alternating Renewal Process

What is the distribution of S’N(t), i.e., the time of

'the last renewal prior to

(or at) time t (will be used later)?
Lemma.
~ — S —
PlSgy < sl = Fz (t) + | In (t —y)dm(y), s <t
Proof.
Prof. Shun-Ren Yang, CS, NTHU 56




Application 2 : Alternating Renewal Process

Note: From the previous lemma, we get:

P[S'N(t) =0 = I3()
dFg  (y) = Fz(t—y)dm(y)

| reasoning

dFg W) = Js,, W)dy

Prof. Shun-Ren Yang, CS, NTHU 57



Application 2 : Alternating Renewal Process

| To prove:

Alternating Renewal Tt

leory (Conditioning ¢

Prof. Shun-Ren Yang, CS, NTHU
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Alternating Renewal Processes

{(Zk, Y3), ke >

= Alterna

Theorem. If

lim 1
t—00

o

: Z k Y k : Zk+1 Yk+1 :
., — "
I

|

1} are i.i.d.

ting Renewal Proces

~

ElZ,+Y,] < oo, a1

~

’[system is “ON” at

Z;i ~ Fz(t)

ses ¢ Y ~ F(t)
\ Zi + Yi ~ Fg(
1d Fz:%n‘kffn 1S non-ari

time t] 2 lim P(t) =

t—00

oeneration Times

t)
thmetic, then

E[Z,)]

E[Z,] + E]Y,]

Prof. Shun-R
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Alternating Renewal Processes

Proof.

Prof. Shun-Ren Yang, CS, NTHU 60



Applications of the Alternating Renewal Theory

Computation of the distribut

limy—.o0 P[A(t) < 2] =? (lim,.
1. e Let an on-off cycle co

e The system is “on” at
i.e., “on” the first x u

ions of A(t),Y(t), aj

oo PY (t) < 2] =7)
rrespond to a renews

, time ¢ if the age at
nits of a renewal inte

N

~

d T'(t), i.e.,

~

(limy_,o0 P[T(t) < 2] =)

] interval.

t is less or equal to x,

orval.

OFF

—

I
g
~— A _
Y
X ~ F
Prof. Shun-Ren Yang, CS, NTHU 61



Applications of the Alternating Renewal Theory

2.

lim P[Y(t) <] = lim P[*OFF” at t]

{— 00 {—00

Prof. Shun-Ren Yang, CS, NTHU 62



Applications of the Alternating Renewal Theory
3 1 : = — (44 D 2
3 Consider cycle time x > x ON
cycle time z <ax —  “OFF”
ON < X
> X - >
- > OFF
“ T T
...... 5, g R

Prof. Shun-Ren Yang, CS, NTHU
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Application 3 : Compute £[Y (¢)] by conditioning S,

~ ~

V()] = BIY IS5 =0-F)+ | BV ()85 = wF(t — y)dm(y)

Prof. Shun-Ren Yang, CS, NTHU 64



Renewal Reward

Process and Applications

e R,
e IR,

o {En,,n > 1} are i.i.d

~

~

N(@)

n

JAN
= the reward ea,

> 0, for all n;

e 1}, may depend on

o .. {(L

o Let R(t) = Z R, 2 the total reward e

rned at the time of t

~

., with mean F[R];
T

i.1.d. random variab

y

~ F

=

R
|
B

!
I
I
I
I
I i
I
4

he ny, renewal;

les;

rrned by ¢

Prof. Shun-Ren Yang, CS, NTHU
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Renewal Reward Process and Applications

~

Theorem. If F[R] < oo, E|;

L.

i.e., long-run average

R

T] < oo, then

(
t

E[R(t)] B[R]

~

as t

t - E[7]

i.e., expected long-run average reward =

t — o0
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Renewal Reward

Process and Applications

Note: The Renewal Reward Theorem says th

. The long-run average reward

1 ast— oo, ie., lin

t—

at:
N ()
R, N
H n=1 _ E[R]
L / F[7]
N——

Time Average
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Application # 1 : (Alternating Renewal Processes)

Z, Y, |

N
»‘
+
~\
wn
+

1__
<
|

I I
ON | OFF ON | OFF |
|

/
|

/
/,

Regeneration Times
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Application # 2 : (Time Avg. of Age and Residual life)

A (1) _— Slop= 1,(t/t=1)

To find lim J

t—00 t
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Application # 2 : (Time Avg. of Age and Residual life)

Y (1)

b
/ Y (s)ds )
To find lim 20 ; =7 Note that Y(s) =2 — s.

t—0o0
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Application # 3 : The Little’s Formula - Part |

e A G/G/1 queueing server:

— Let X4, X9,... denote the interarrival times between customers;
and let Y7, Y5, ... denote the service times of successive customers.
We shall assume that

ElY;| < F|X;] < o0

e Suppose that the first customer arrives at time 0 and let n(t) denote
the number of customers in the system at time £. Define

t
L= lim | n(s)ds/:

—00 0

. S

e Imagine that a reward is being earned at time s at rate n(s). If we let
a cycle correspond to the start of a busy period, then the process
restarts itself each cycle.
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Application # 3 : The Little’s Formula — Part |

e As L represents the long-run average reward, it follows from the
Renewal Reward Theorem that
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Application #

3 : The Little’s

5 Formula - Part Il

e Let W; denote
system and def

e Let N denote f
the average rex
cycle time is N

|44

the amount of time

fine

W = lim i

the 7th customer spends in the

4+ W,

n—oxo
the number of custor

vard per unit time ol
[ and the cycle rewazr

n
ners served in a cycle, then W is
[ a renewal process in which the
'd is Wi + - -+ Wy, and, hence,
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Application # 3 : The Little’s Formula — Part Il

Theorem. Let A = 1/F|X;] denote the arrival rate. Then
L=\W

Proof.
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Application # 3 : The Little’s Formula — Part Il

Remarks

e The Little’s Formula states that

e By replacing “the system” by “the queue” the same proof shows that

e By replacing “the system” by “service” we have that
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Regenerative Proces

3SEeS

4
I a cycle I cycle I
SS S6 S7
- >
E[x] x~F,E[X]

Stochastic process Z = {Z(t)

called a regenerative process it the regenerative pr

Theorem. If E[Z] < oc

lim P[Z(t) = j]

t—00

,t > 0} with state sy

FE|lamount of time

operty holds.

in state j in a cycle]

vace S = {0,1,2,...} is

FE|cycl

/0 PIZ(t) = j, &1

e length]

> t]dt

Elz]
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Regenerative Processes

Proof.

Prof. Shun-Ren Yang, CS, NTHU 77



Regenerative Processes

Theorem. For a regenerative process with E[Z1] < oo, with probability 1,

r ‘time in j during (0, 1)] Etime in state j during a cycle]
im —

t—00 t E|time of a cycle]
Proof.

Homework. to be announced on the web
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Delayed Renewal Processes

e We often
time has

For instazr
t>0. If ¢
time we 1
as the rer

Formally,
nonnegati
having di
define

e Definitic
or a d

consider a counting

2 different distributic

let {X,,,n=1,2,...
ve random variables
stribution £, n > 1.

Np(t)

m. The stochastic p

elayed renewal proces

1ce, we might start o
\, renewal does not o«
nust wait until the fis
naining interarrival c

process for which the
n from the remainin

bserving a renewal p
ccur at ¢, then the di
st observed renewal
listributions.

} be a sequence of ir
with X7 having dist
Let Sop =0, 5,, = Zq

= sup{n : S, <t}.

rocess {Np(t),t > 0]
5S.

» first interarrival
o ones.

rocess at some time
stribution of the

will not be the same

.dependent

ribution G, and X,
' X;,m > 1, and

- is called a general
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Delayed Renewal Processes

e When G = F, we have, of course, an ordinary renewal process. As in
the ordinary case, we have

P{Np(t) =n} =

e Let mp(t) = E[Np(t)]. Then it is easy to show that

mp(t) =

and by taking transforms, we obtain

mD(S') —
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Delayed Renewal Processes

By using the corresponding result for the ordinary renewal process, it is
easy to prove similar limit theorems for the delayed process. Let
= [y xdF(x).

Proposition.

1. With probability 1,

JZ\TD(t) 1
> — as t — oo
t v
2.
mpl(t 1
D( ) > — as t — oo
t Y
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Delayed Renewal Processes

3. If F is not lattice, then

mp(t+a) —mp(t) — — as t — oo

4. If F' and G are lattice with period d, then
d

E[number of renewals at nd] — — as n — 00
M

5. If F'is not lattice, u < oo, and h directly Riemann integrable, then

j()mh(t—az)de(az) / h(t)dt/
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Delayed Renewal Processes

e In the same way we proved the result in the case of an ordinary
renewal process, it follows that the distribution of the time of the last
renewal before (or at) ¢ is given by

P{Sn@) < s} =
e When p < oo, the distribution function
Fe(x) =

is called the equilibrium distribution of F'. Its Laplace transform is
given by

Fu(s) = /(’OO ST qF, ()

)
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Delayed Renewal Processes

e The delayed renewal process with G = F, is called the equilibrium

renewal process and is extremely important.

e For suppose that we start observing a renewal process at time t. Then
the process we observe is a delayed renewal process whose initial
distribution is the distribution of Y (¢) (i.e., residual life). Thus, for ¢
large, it follows that the observed process is the equilibrium renewal

process.
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Delayed Renewal Processes

Let Yp(t) denote the residual life at ¢ for a delayed renewal process.

Theorem. For the equilibrium renewal process:

1. mp(t) =t/u
2. P{Yp(t) <z} = Fe(x) for all t > 0
3. {Np(t),t > 0} has stationary increments

Proof.
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Delayed Renewal Processes
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