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Preliminaries

• Applied Probability and Performance Modeling

– Prototype

– System Simulation

– Probabilistic Model

• Introduction to Stochastic Processes

– Random Variable (R.V.)

– Stochastic Process

• Probability and Expectations

– Expectation

– Generating Functions for Discrete R.V.s

– Laplace Transforms for Continuous R.V.s

– Moment Generating Functions
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Preliminaries

• Probability Inequalities

– Markov’s Inequality (mean)

– Chebyshev’s Inequality (mean and variance)

– Chernoff’s Bound (moment generating function)

– Jensen’s Inequality

• Limit Theorems

– Strong Law of Large Numbers

– Weak Law of Large Numbers

– Central Limit Theorem
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Applied Probability and Performance Modeling

• Prototyping

– complex and expensive

– provides information on absolute performace measures but little on
relative performance of different designs

• System Simulation

– large amount of execution time

– could provide both absolute and relative performance depending on
the level of detail that is modeled

• Probabilistic Model

– mathematically intractable or unsolvable

– provide great insight into relative performance but, often, are not
accurate representations of absolute performance
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A Single Server Queue

HeadTail

Waiting line Server

DeparturesArrivals

Queue

• Arrivals: Poisson process, renewal process, etc.

• Queue length: Markov process, semi-Markov process, etc.

• . . .
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Random Variable

• A “random variable” is a real-valued function whose domain is a
sample space.

• Example. Suppose that our experiment consists of tossing 3 fair
coins. If we let ỹ denote the number of heads appearing, then ỹ is a
random variable taking on one of the values 0, 1, 2, 3 with
respective probabilities

P{ỹ = 0} = P{(T, T, T )} =
1
8

P{ỹ = 1} = P{(T, T, H), (T, H, T ), (H, T, T )} =
3
8

P{ỹ = 2} = P{(T, H, H), (H, T, H), (H, H, T )} =
3
8

P{ỹ = 3} = P{(H, H, H)} =
1
8
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Random Variable

• A random variable x̃ is said to be “discrete” if it can take on only a
finite number—or a countable infinity—of possible values x.

• A random variable x̃ is said to be “continuous” if there exists a
nonnegative function f , defined for all real x ∈ (−∞,∞), having the
property that for any set B of real numbers

P{x̃ ∈ B} =
∫

B
f(x)dx
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Stochastic Process

• A “stochastic process” X = {x̃(t), t ∈ T} is a collection of random
variables. That is, for each t ∈ T , x̃(t) is a random variable.

• The index t is often interpreted as “time” and, as a result, we refer to
x̃(t) as the “state” of the process at time t.

• When the index set T of the process X is

– a countable set → X is a discrete-time process

– an interval of the real line → X is a continuous-time process

• When the state space S of the process X is

– a countable set → X has a discrete state space

– an interval of the real line → X has a continuous state space
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Stochastic Process

• Four types of stochastic processes

– discrete time and discrete state space

– continuous time and discrete state space

– discrete time and continuous state space

– continuous time and continuous state space
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Discrete Time with Discrete State Space

0 1 2 3 4 5 6
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551/4

551/2

553/4

56

X(t)

t

X(t) = closing price of an IBM stock on day t
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Continuous Time with Discrete State Space

55

551/4

551/2

553/4

56

X(t)

t

X(t) = price of an IBM stock at time t on a given day

9 A.M.
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Discrete Time with Continuous State Space

X(t) = temperature at the airport at time t

70

80

90

100

110

X(t)

t

8 A.M. 9 10 11 12 1 P.M. 2
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Continuous Time with Continuous State Space

X(t)

t

X(t) = temperature at the airport at time t

8 A.M.
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Two Structural Properties of stochastic processes

a. Independent increment: if for all t0 < t1 < t2 < . . . < tn in the
process X = {x̃(t), t ≥ 0}, random variables
x̃(t1) − x̃(t0), x̃(t2) − x̃(t1), . . . , x̃(tn) − x̃(tn−1) are independent,
⇒ the magnitudes of state change over non-overlapping time intervals
are mutually independent

b. Stationary increment: if the random variable x̃(t + s) − x̃(t) has the
same probability distribution for all t and any s > 0,
⇒ the probability distribution governing the magnitude of state
change depends only on the difference in the lengths of the time indices
and is independent of the time origin used for the indexing variable

⇓
X = {x̃1, x̃2, x̃3, . . . , x̃∞}

limiting behavior of the stochastic process
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Two Structural Properties of stochastic processes

<Homework>. Define stochastic processes that you think have the
following properties:

• both independent and stationary increments,

• neither independent nor stationary increments,

• independent but not stationary increments, and

• stationary but not independent increments.
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Expectations by Conditioning

Denote by E[x̃|ỹ] that function of the random variable ỹ whose
value at ỹ = y is E[x̃|ỹ = y].

⇒ E[x̃] = E[E[x̃|ỹ]]

If ỹ is a discrete random variable, then

E[x̃] =
∑
y

E[x̃|ỹ = y]P{ỹ = y}

If ỹ is continuous with density fỹ(y), then

E[x̃] =
∫ ∞

−∞
E[x̃|ỹ = y]fỹ(y)dy
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Expectations by Complementary Distribution

For any non-negative random variable x̃

E[x̃] =
∞∑

k=0

p(x̃ > k) discrete

E[x̃] =
∫ ∞

0
[1 − Fx̃(x)]dx continuous

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Expectations by Complementary Distribution

Discrete case:

E[x̃] = 0 · P (x̃ = 0) + 1 · P (x̃ = 1) + 2 · P (x̃ = 2) + . . . (horizontal sum)

= [1 − P (x̃ < 1)] + [1 − P (x̃ < 2)] + . . . (vertical sum)

= P (x̃ ≥ 1) + P (x̃ ≥ 2) + . . .

=
∞∑

k=1

P (x̃ ≥ k) (or
∞∑

k=0

P (x̃ > k))

0 1 2 3 4 x

P(   =1)x~

P(   =0)x~

P(   =2)x~

P(   =3)x~

P(   ≦x)x~
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Expectations by Complementary Distribution

Continuous case:

E[x̃] =
∫ ∞

0
x · fx̃(x)dx

=
∫ ∞

0

(∫ x

0
dz

)
· fx̃(x)dx

=
∫ ∞

0

[∫ ∞

z
fx̃(x)dx

]
· dz

=
∫ ∞

0
[1 − Fx̃(z)]dz

x

z

x

zx=z x=z
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Compound Random Variable

S̃ñ = x̃1 + x̃2 + x̃3 + . . . + x̃ñ, where ñ ≥ 1 and
x̃i are i.i.d. random variables.

⇒ E[S̃ñ] =? V ar[S̃ñ] =?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E[S̃ñ] = E[E[S̃ñ|ñ]]

=
∞∑

n=1

E[S̃ñ|ñ = n] · P (ñ = n)

=
∞∑

n=1

E[x̃1 + x̃2 + . . . + x̃n] · P (ñ = n)

=
∞∑

n=1

n · E[x̃1] · P (ñ = n)

= E[ñ] · E[x̃1]
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Compound Random Variable

Since V ar[x̃] = E[V ar[x̃|ỹ]] + V ar[E[x̃|ỹ]], we have

V ar[S̃ñ] = E[V ar[S̃ñ|ñ]] + V ar[E[S̃ñ|ñ]]

= E[ñV ar[x̃1]] + V ar[ñE[x̃1]]

= V ar[x̃1]E[ñ] + E2[x̃1]V ar[ñ]
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Probability Generating Functions for Discrete R.V.s

• Define the generating function or Z-transform for a sequence of
numbers {an} as ag(z) =

∑∞
n=0 anzn.

• Let x̃ denote a discrete random variable and an = P [x̃ = n]. Then
Px̃(z) = ag(z) =

∑∞
n=0 anzn = E[zx̃] is called the probability generating

function for the random variable x̃.

• Define the kth derivative of Px̃(z) by

P
(k)
x̃ (z) =

dk

dzk
Px̃(z).

Then, we see that

P
(1)
x̃ (z) =

∞∑
n=0

nanzn−1 → P
(1)
x̃ (1) = E[x̃]
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Probability Generating Functions for Discrete R.V.s

and

P
(2)
x̃ (z) =

∞∑
n=1

n(n − 1)anzn−2 → P
(2)
x̃ (1) = E[x̃2] − E[x̃]

• See Table 1.1 [Kao] for the properties of generating functions.

• <Homework>. Derive the probability generating functions for
“Binomial”, “Poisson”, “Geometric” and “Negative Binomial” random
variables. Then, derive the expected value and variance of each
random variable via the probability generating function.
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Laplace Transforms for Continuous R.V.s

• Let f be any real-valued function defined on [0,∞). The Laplace
transform of f is defined as

F ∗(s) =
∫ ∞

0
e−stf(t)dt.

• When f is a probability density of a nonnegative continuous random
variable x̃, we have

F ∗
x̃ (s) = E[e−sx̃]

• Define the nth derivative of the Laplace transform F ∗
x̃ (s) with respect

to s by

F
∗(n)
x̃ (s) =

dn

dsn
F ∗

x̃ (s) → F
∗(n)
x̃ (s) = (−1)nE[x̃ne−sx̃].

Then, we see that
E[x̃n] = (−1)nF

∗(n)
x̃ (0)
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Laplace Transforms for Continuous R.V.s

• See Table 1.2 [Kao] for the properties of Laplace Transforms.

• <Homework>. Derive the Laplace transforms for “Uniform”,
“Exponential”, and “Erlang” random variables. Then, derive the
expected value and variance of each random variable via the Laplace
transform.
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Moment Generating Functions

• The moment generating function Mx̃(θ) of the random variable x̃ is
defined for all values θ by

Mx̃(θ) = E[eθx̃]

=

⎧⎪⎪⎨
⎪⎪⎩
∑
x

eθxp(x), if x̃ is discrete∫ ∞

−∞
eθxf(x)dx, if x̃ is continuous

• The nth derivative of Mx̃(θ) evaluated at θ = 0 equals the nth
moment of x̃, E[x̃n], that is,

M
(n)
x̃ (0) = E[x̃n], n ≥ 1
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Markov’s Inequality

• Let h be a nonnegative and nondecreasing function and let x̃ be a
random variable. If the expectation of h(x̃) exists then it is given by

E[h(x̃)] =
∫ ∞

−∞
h(z)fx̃(z)dz. (1)

• By assumptions on h it easily follows that∫ ∞

−∞
h(z)fx̃(z)dz ≥

∫ ∞

t
h(z)fx̃(z)dz ≥ h(t)

∫ ∞

t
fx̃(z)dz. (2)

• Combining (1) and (2) yields Markov’s inequality:

P [x̃ ≥ t] ≤ E[h(x̃)]
h(t)

, Markov’s Inequality.

• When h(x) = x and x̃ is nonnegative then we have

P [x̃ ≥ t] ≤ E[x̃]
t

, t > 0 Simple Markov’s Inequality.
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Markov’s Inequality

• The simple Markov’s inequality is a first-order inequality since only
knowledge of E[x̃] is required.

• The simple Markov’s inequality is quite weak but can be used to
quickly check statements made about the tail of a distribution of a
random variable when the expectation is known.

a

(x)fx~

• Example. If the expected response time of a computer system is 1
second, then the simple Markov’s inequality shows that
P [x̃ ≥ 10] ≤ .1 and thus at most 10% of the response times in the
system can be greater than 10 seconds.
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Chebyshev’s Inequality – second-order bound

If x̃ is a random variable with mean μ and variance σ2, k > 0, then

P (|x̃ − μ| ≥ k) ≤ σ2

k2

Proof :

Since (x̃ − μ)2 is a non-negative random variable, applying Markov’s
inequality yields

P ((x̃ − μ)2 ≥ k2) ≤ E[(x̃ − μ)2]
k2

P (|x̃ − μ| ≥ k) ≤ σ2

k2
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Chernoff’s Bound

If x̃ is a random variable with moment generating function Mx̃(t) = E[etx̃],
then, for a > 0, we have

P (x̃ ≥ a) ≤ inf
t≥0

e−taMx̃(t) ≤ e−taMx̃(t) ∀t > 0

(P (x̃ ≤ a) ≤ e−taMx̃(t) ∀t < 0) → exercise

Proof :

t > 0 : P (x̃ ≥ a) = P (etx̃ ≥ eta) (···t > 0)

≤ E[etx̃]
eta

= e−taMx̃(t)

<Homework>. Derive the tightest Chernoff’s Bound for Poisson random
variable x̃ ∼ P (x; λ).
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Jensen’s Inequality

Lemma. Let h be a convex function. Define the linear function g that is
tangent to h at the point a as follows:

g(x, a) def= h(a) + h(1)(a)(x − a).

Then,
g(x, a) ≤ h(x), for all x.

h(x)

g(x,a)=h(a)+h(1)(a)(x-a)

h(1)(a)

a
x
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Jensen’s Inequality

Jensen’s Inequality. If h is a differentiable convex function, defined on
real variables, then

E[h(x̃)] ≥ h(E[x̃]).

P roof :

From the previous lemma, we have

h(x̃) ≥ h(a) + h′(a)(x̃ − a)

Let a = E[x̃]. Taking E[ ] on both sides yields

E[h(x̃)] ≥ h(E[x̃]) + h′(a)[E[x̃] − E[x̃]]

= h(E[x̃])
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Limit Theorems

Theorem (Weak Law of Large Numbers): Let
S̃n = x̃1 + x̃2 + . . . + x̃n, where x̃1, x̃2, . . . x̃n, . . . are i.i.d. random
variables with finite mean E[x̃], then for any ε > 0,

lim
n→∞P (| S̃n

n
− E[x̃]| ≥ ε) = 0

Theorem (Strong Law of Large Numbers): Let
S̃n = x̃1 + x̃2 + . . . + x̃n, where x̃1, x̃2, . . . x̃n, . . . are i.i.d. random
variables with finite mean E[x̃], then for any ε > 0,

P ( lim
n→∞ | S̃n

n
− E[x̃]| ≥ ε) = 0
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Limit Theorems

Theorem (Central Limit Theorem): Let S̃n = x̃1 + x̃2 + . . . + x̃n,
where x̃1, x̃2, . . . , x̃n are i.i.d. random variables with finite mean E[x̃]
and finite variance σ2

x̃ < ∞, then,

lim
n→∞P

(
S̃n − nE[x̃]√

nσ
≤ y

)
=

∫ y

−∞
1√
2π

e
−x2

2 dx

∼ N(0, 1)

Normalized Gaussian distribution
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Strong Law of Large Numbers

To motivate our discussion we perform a simple coin tossing experiment.
Consider a coin that lands heads up with probability p. For the sake of the
example let p = 1/4 and assign the value of 1 to heads and 0 to tails. An
experiment consists of an infinite number of tosses. Let Ω denote the set of
outcomes of all possible experiments. For any particular experiment ω ∈ Ω
the corresponding sequence of 0s and 1s is known deterministically and is
termed the sample path of ω. The ”randomness” in experiments arises by
selecting one experiment from the set. We define Yn(ω) to be the
statistical average of the first n outcomes of experiment ω. Intuitively, for
large n the value of Yn(ω) is close to p since heads lands up with
probability p. Clearly, however, there are sample paths for which this is
not the case, and we find it convenient to list two such paths.
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Strong Law of Large Numbers

The sample path of experiment ω1 consists of an alternation of heads and
tails (starting by 1,0,1,0, ...). An easy calculation shows that

Yn(ω1) =

⎧⎨
⎩ 1/2, n = 2k,

k/(2k − 1), n = 2k − 1, k = 1, 2, ... .

Notice that Yn(ω1) converges to 1/2 and not to p as expected.
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Strong Law of Large Numbers

Definition 5.39 is an adaptation of the definition of convergence for a
deterministic sequence that accounts for the fact that the sequence arises
from a random experiment. To see this, recall that by definition of a limit,
if a deterministic sequence an satisfies an → a then, for any ε > 0, there
exists a value n(ε) so that |an −a| ≤ ε as n → ∞ for all n ≥ n(ε). There are
thus no occurrences of |an − a| > ε for values of n ≥ n(ε). When sequences
correspond to random experiments, as in the coin tossing experiment
mentioned earlier, this type of convergence is too strong. For example, the
sample path of ω1 converges to a value different from p and the sample
path of ω2 does not converge. There is still a sense of convergence to p,
however, since the set of experiments that converge to p have probability 1.
Violations of sample paths that do not converge to p have probability of 0.
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Strong Law of Large Numbers

Recall that since a probability of 0 does not imply impossibility (see
Section 4.5.2) we can only conclude that violations of this type of
convergence are extremely rare but not impossible.

We can now state the strong law of large numbers as

P
[

limn→∞
∣∣∣Sn

n − E[X]
∣∣∣ ≥ ε

]
= 0

which can equivalently be stated, using Definition 5.39, as

Sn

n
→ E[X] as n → ∞, Strong Law of Large Numbers.
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Strong Law of Large Numbers

The strong law makes a precise statement regarding sample paths obtained
in the ”typical” experiment, that is, for sufficiently large n there is a large
probability that a randomly selected sample path has a statistical average
close to E[X]. In contrast, the weak law makes a statement regarding the
entire ensemble of sample paths, that is, for sufficiently large n there is a
large probability that, averaged over all sample paths, the statistical
average is close to E[X]. The weak law does not make any statement
regarding particular sample paths of random experiments and, specifically,
does not imply that a randomly selected sample path converges to E[X].
Conceivably it could be the case that all sample paths either converge to
values different from E[X] or do not converge at all (as with experiments
ω1 and ω2, respectively) and the weak law could still hold. In these cases
the strong law would be violated. It is obvious from what we have said
that the strong law implies the weak law.
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