COM5115 : Stochastic Processes for Network

(網路之隨機程序) (2004 Fall)


    Prof. Shun-Ren Yang(楊舜仁)

        Office : EECS 3202

        Phone : (03)5715131#1212

        Email : sryang@cs.nthu.edu.tw

         9/23 Poisson Processes 投影片更新

    9/24 上課時間 Mn M5 M6 (from 12:10 ~ 3:00 Monday)

         9/27 Poisson Processes (partial 3) 投影片更新

        9/30 部分同學反應, 希望上課改為以抄板書方式進行. 為了提昇同學們的學習效果,

        從 10/4 開始的課程, 將以白板書寫的方式進行. 歡迎同學有任何建議, 隨時提供給老師參考.

   10/01 作業公告 : 公佈作業後兩個禮拜後交,遲交的每過一個禮拜分數打8折,公佈作

        業解答後作業還未交者以0分計算.

   10/04 Renewal Processes (partial 1) 投影片更新

      10/06 作業公告: 因為第一題題目有誤,deadline 延長一個禮拜

        Homework for Chapter 2. Poisson Processes (ps)(pdf) deadline : 10/18

      10/11 Renewal Processes (partial 2) 投影片更新

   10/11 作業公告:

                Chap 2. Non-homogeneous Poisson Processes p.24 deadline : 10/18

      10/11 作業公告:

                Chap 3. Renewal Function p.15 deadline : 10/25

      10/11 期中考日期 : 11/08

      10/18 Renewal Processes (partial 3) 投影片更新

   10/24 課程網頁移到 elearning 上,還未能登入請mail給助教

   10/24 明天因為颱風,依照行政院公佈不上課

   11/01 elearning登入請參照網頁 http://learning.cc.nthu.edu.tw/training/qa.htm 或是直接電洽計

        通中心學習科技組陳謙民先生,分機1243

      11/22 Renewal Processes (partial 6) 投影片更新

   11/29 Renewal Processes (partial 7) 投影片更新

   12/02 作業公告:

        作業題目已經公佈在elearning上請同學自行download deadline: 12/20

      12/06 Markov chain (partial 1) 投影片更新

      12/13 Markov chain (partial 2) 投影片更新

      12/20 Markov chain (partial 3) 投影片更新

   12/27 今天停課一次,補課時間近期內會公佈

   12/27 補課時間:

        12/29星期三 下午2:00~5:00 地點 資電館128

      12/28 因為公佈的上課時間有些同學無法前往,所以我和老師討論之後決定,
        這禮拜停課一次,接下來的
1/31/10上課,期末考時間會定在期末考週的非上課時間考試。

   1/3 Markov chain (partial 4) 投影片更新

   1/10 Markov Process 投影片更新

   1/10 期中考日期:1/12 下午 2:00 地點:資電館128
 

 

           •  Preliminaries   

           •   Poisson Processes  

Introduction, Properties, Non-homogeneous Poisson Processes, Compound

Poisson Processes, and Poisson Arrival See Time Average (PASTA);

           •   Renewal Processes

Introduction, Limit Theorems, Key Renewal Theorems, Renewal Reward

Processes, Delayed Renewal Processes, and Regenerative Processes;

           •   Discrete-Time Markov Chains

Introduction, Classification of States, Markov Reward Processes, Time-

Reversible Markov Chains, and Semi-Markov Chains

           •   Continuous-Time Markov Chains

Introduction, Birth and Death Processes, Kolmogorov Differential Equations,

Limiting Probabilities, Time Reversibility, Phase-Type Distributions, and

Uniformization

 Kao, Edward P.C., “An Introduction to Stochastic Processes”, Wadsworth

    Publishing Company,    1997.

•  Ross, S.M., “Introduction to Probability Models”, Academic Press.

 Ross, S.M., “Stochastic Processes”, John Wiley & Sons, Inc., 1996.

 Gallager, Robert G., “Discrete stochastic processes”, Kluwer Academic

    Publishers, 1996.

 Homework: 30%

•  Midterm Examination: 35%

 Final Examination: 35%