
Ch8: Bivariate 
Distributions
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8.1 Joint distributions of two 
random variables

We now consider two or more random 
variables that are defined 
simultaneously on the same sample 
space.

 Functions

 Functions
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Joint Probability Mass Functions

Definition 
 Let X and Y be two discrete random variables 

defined on the same sample space. 

 Let the sets of possible values of X and Y be A and 
B, respectively. The function

p(x, y) = 
is called the joint probability mass function of 
X and Y .

Note that p(x, y) ≥ 0. If x A or y    B, then 
Also,

 
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Definition 

 Let X and Y have joint probability mass 
function p(x, y). 

 Let A be the set of possible values of X and 
B be the set of possible values of Y . 

 Then the functions                       and 

are called, respectively, the 
functions of X 

and Y.

)(xpX

)(ypY
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Example 8.1

A small college has 90 male and 30 female 
professors. An ad hoc committee of five is 
selected at random to write the vision and 
mission of the college. 

Let X and Y be the number of men and 
women on this committee, respectively.

(a) Find the joint probability mass function of 
X and Y .

(b) Find pX and pY , the marginal probability 
mass functions of X and Y .
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Example 8.1

(a)

1. The set of possible values for both X and Y is {0, 1, 2, 
3, 4, 5}.

2. 

(b)

1. 
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5y  x,5},{0,1,2,3,4y x,if                     
),(



 

yxp

,5}{0,1,2,3,4y    x,          )(,           )(

),( and

),( 5, y  xif 0y)p(x, Since

5

0x

5

0y















ypxp

yxp

yxp

YX



77

Let X and Y be discrete random variables with 
joint probability mass function p(x, y). 

Let the sets of possible values of X and Y be 
A and B, respectively. 

To find E(X) and E(Y), first we calculate pX

and pY , the marginal probability mass 
functions of X and Y, respectively. Then we 
will use the following formulas.

 E(Y)     ;                    E(X)
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Example 8.3

Let the joint probability mass function 
of random variables X and Y be given 
by

Find E(X) and E(Y).
1. First we need to calculate  

2. 


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Example 8.3

3. 
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Theorem 8.1

Let p(x, y) be the joint probability mass 
function of discrete random variables X and Y. 
Let A and B be the set of possible values of X 
and Y, respectively. 
If h is a function of two variables from R2 to 
R, then h(X, Y) is a discrete random variable 
with the expected value given by

provided that the sum is absolutely 
convergent.
(generalization of Theorem 4.2)

)],([ YXhE
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Corollary

For discrete random variables X and Y ,

E(X + Y) = E(X) + E(Y).

Proof: In Theorem 8.1 let h(x,y)=x+y. Then

E(Y)E(X)

Y)E(X






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Joint Probability Density 
Functions

Definition 

Two random variables X and Y, defined on the same 
sample space, have a continuous joint distribution if 
there exists a nonnegative function of two variables,  
f (x, y) on R × R, such that for any region R in the 
xy-plane that can be formed from rectangles by a 
countable number of set operations,

The function f (x, y) is called the joint probability 
density function of X and Y.

R)Y)P((X,
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Let R = {(x, y) : x ∈ A, y ∈ B}, where A and B 
are any subsets of real numbers that can be 
constructed from intervals by a countable 
number of set operations. Then (8.2) gives

Letting A = (−∞,∞), B = (−∞,∞), (8.3) 
implies the relation

 
B A

dxdyyxf ),(B)Y A,P(X
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Definition

Let X and Y have joint probability density 
function f(x, y); then the functions

are called, respectively, the marginal 
probability density functions of X and Y .





)(

)(

yf

xf

Y

X
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Let X and Y be two random variables 
(discrete, continuous, or mixed). 

The joint probability distribution 
function, or joint cumulative 
probability distribution function, or 
simply the joint distribution of X and Y, 
is defined by

F(t,u) =  

for all −∞ < t, u < ∞.
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The marginal probability distribution 
function of X, FX, can be found from F as 
follows:

FX (t) = 

≡ F(t,∞).

Similarly, FY , the marginal probability 
distribution function of Y, is

FY (u) = P(Y ≤ u)  ≡
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Example 8.4

The joint probability density function of random 
variables X and Y is given by

(a) Determine the value of λ.

(b) Find the marginal probability density functions of 
X and Y .

(c) Calculate E(X) and E(Y).



 


otherwise.0

10
),(

2 yxxy
yxf


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Example 8.4
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Example 8.5

For λ > 0, let

Determine if F is the joint probability 
distribution function of two random variables 
X and Y.



 




otherwise.0

0y  ,0 if1
),(       

)( xe
yxF

yx
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Definition

Let S be a subset of the plane with area A(S). 
A point is said to be randomly selected 
from S if for any subset R of S with area A(R), 
the probability that R contains the point is  

This definition is essential in the field of 
probability. By the following 

examples, we will show how it can help to 
solve problems readily.
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Example 8.7

A man invites his fiancee to a fine hotel 
for a Sunday brunch. They decide to 
meet in the lobby of the hotel between 
11:30 A.M. and 12 noon. 

If they arrive at random times during 
this period, what is the probability that 
they will meet within 10 minutes?
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1. Let X and Y be the minutes past 11:30 A.M. that the man 
and his fiancée arrive at the lobby, respectively. 

Let S = {(x, y) : }, and 

R = {(x, y) ∈ S : }.

2.

3. From  fig 8.2,  R is the shaded region

area(R)= = 500

25

900
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Theorem 8.2

Let f (x, y) be the joint probability density 
function of random variables X and Y. 

If h is a function of two variables from R2 to 
R, then h(X,Y) is a random variable with the 
expected value given by

provided that the integral is absolutely 
convergent.

)],([ YXhE
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Corollary

For random variables X and Y,

E(X + Y) =
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Example 8.9

Let X and Y have joint probability density 
function

Find E(X2 + Y 2).
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8.2 Independent random 
variables

Two random variables X and Y are called 
independent if, for arbitrary subsets A and 
B of real numbers, the events {X ∈ A} and {Y 
∈ B} are independent, that is, if

P(X ∈ A, Y ∈ B) = 

This implies that for any two real numbers a 
and b,

P(X ≤ a, Y ≤ b) = 
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Theorem 8.3

Let X and Y be two random variables 
defined on the same sample space. 

If F is the joint probability distribution 
function of X and Y, then X and Y are 
independent if and only if for all real 
numbers t and u,

F(t,u) = 
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Independence of Discrete 
Random Variables

Theorem 8.4 
 Let X and Y be two discrete random 

variables defined on the same sample 
space. 

 If p(x, y) is the joint probability mass 
function of X and Y, then X and Y are 
independent if and only if for all real 
numbers x and y,

p(x, y) = (8.11)
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Let X and Y be discrete independent 
random variables with sets of possible 
values A and B, respectively. Then 
(8.11) implies that for all x ∈ A and y ∈
B,

P(X = x | Y = y) = 

and

P(Y = y | X = x) = 
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Example 8.10

Suppose that 4% of the bicycle fenders, 
produced by a stamping machine from 
the strips of steel, need smoothing. 

What is the probability that, of the next 
13 bicycle fenders stamped by this 
machine, two need smoothing and, of 
the next 20, three need smoothing?
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1. Let X be the number of bicycle fenders among the first 13 
that need smoothing. 

Let Y be the number of those among the next 7 that need 
smoothing. 

2. We want to calculate P(X = 2, Y = 1). Since X and Y are 
independent binomial random variables with parameters 
(13, 0.04) and (7, 0.04), respectively,

36
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
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Independence of Continuous 
Random Variables

Theorem 8.7 

 Let X and Y be jointly continuous random 
variables with joint probability density 
function f(x, y). 

 Then X and Y are if and only if 
f (x, y) is the product of their marginal 
densities fX(x) and fY(y). 

By differentiating F(x,y)= , 
you can prove this theorem!
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Example 8.12

Stores A and B, which belong to the same 
owner, are located in two different towns. 
If the probability density function of the 
weekly profit of each store, in thousands of 
dollars, is given by

and the profit of one store is independent of 
the other, what is the probability that next 
week one store makes at least $500 more 
than the other store?



 


otherwise

xifx
xf

0

31 4/
)(
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1. Let X and Y denote next week’s profits of A and B, 
respectively. The desired probability is 

Since X and Y have the same probability density function, 
by symmetry, this sum equals 2P(X > Y + 1/2).

2. 

39
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Example 8.15

Prove that two random variables X and 
Y with the following joint probability 
density function are not independent.

1.

2.  



 


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8.3 Conditional distributions

Conditional Distributions: Discrete 
Case

Conditional Distributions: 
Continuous Case
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Conditional Distributions: 
Discrete Case

Let X be a discrete random variable with set of 
possible values A, and let Y be a discrete random 
variable with set of possible values B. 
Let be the joint probability mass function of X 
and Y, and let be the marginal probability 
mass functions of X and Y.
If the value of Y is known, the conditional 
probability mass function of X given that Y = y 
which is denoted by pX|Y (x|y) is defined as follows:

where x ∈ A, y ∈ B, and pY (y) > 0.

)|(| yxp YX
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Note that

Hence for any fixed y ∈ B, pX|Y (x|y) is 
itself a probability mass function with 
the set of possible values A. 

If X and Y are independent, 
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Similar to pX|Y (x|y), the conditional 
distribution function of X, given 
that Y = y is defined as follows:








xt

YX

YX

ytp

yxF
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|
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Example 8.16

Let the joint probability mass function 
of X and Y be given by

Find pX|Y (x|y) and P(X = 0 | Y = 2).

1.

2. 




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Let X and Y be discrete random 
variables, and let the set of possible 
values of X be A. 

The conditional expectation of the 
random variable X given that Y = y 
is as follows:

where pY (y) > 0.

 )|( yYXE
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If h is a function from R to R, then for 
the discrete random variables X and Y 
with set of possible values A for X, the 
expected value of h(X) is obtained from

 ]|)([ yYXhE
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Example 8.18

Calculate the expected number of aces 
in a randomly selected poker hand that 
is found to have exactly two jacks.

1.  Let X and Y be the number of aces and jacks in a random poker 
hand, respectively.

2. 
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Conditional Distributions: 
Continuous Case

Let X and Y be two continuous random 
variables with the joint probability density 
function f (x, y). 

When the value of Y is known, to find the 
probability of events concerning X, fX|Y (x|y), 
the conditional probability density 
function of X given that Y = y is used. 

fX|Y (x|y) is defined as follows:

provided that fY (y) > 0. 

),(| yxf YX
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Note that

showing that for a fixed y, fX|Y (x|y) is 
itself a probability density function. 

If X and Y are independent, then 
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Also, as we expect, FX|Y (x|y), the 
conditional probability distribution 
function of X given that Y = y is 
defined as follows:

Therefore,

)|(| yxF YX

)|(| yxF
dx

d
YX
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Example 8.21

Let X and Y be continuous random 
variables with joint probability density 
function

Find fX|Y (x|y).







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Example 8.22

First, a point Y is selected at random 
from the interval (0, 1). Then another 
point X is chosen at random from the 
interval (0, Y). 

Find the probability density function of 
X.

1. Let f (x, y) be the joint probability density function of X 
and Y 

)(xfX
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2.

3. Y is uniformly distributed over (0, 1),

4. given Y = y, X is uniformly distributed over (0, y)

5.

57
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Example 8.23

Let the conditional probability density 
function of X, given that Y = y, be

Find P(X < 1 | Y = 2).
1. 
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Similar to the case where X and Y are 
discrete, for continuous random 
variables X and Y with joint probability 
density function f (x, y), the 
conditional expectation of X given 
that Y = y is as follows:

where fY (y) > 0.

 )|( yYXE
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If h is a function from R to R, then, for 
continuous random variables X and Y, 
with joint probability density function    
f (x, y),

 ]|)([ yYXhE
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In particular, this implies that the 
conditional variance of X given that Y = 
y is given by



2

| yYX
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Example 8.24

Let X and Y be continuous random 
variables with joint probability density 
function

Find E(X | Y = 2).
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Example 8.25

The lifetimes of batteries manufactured 
by a certain company are identically 
distributed with probability distribution 
and probability density functions F and 
f, respectively. 

In terms of F, f , and s, find the 
expected value of the lifetime of an s-
hour-old battery.
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1. Let X be the lifetime of the s-hour-old battery. We want to 
calculate E(X | X > s). Let  FX|X>s (t) = P(X ≤ t | X > s)

2. 
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