Ch7: Special Continuous
Distributions
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/.1 Uniform random variables

# Suppose that Xis the value of the
random point selected from an interval

(a, b)

#®Then Xis called a random
variable over (g, b).

#Let Fand 7be probability distribution
and density functions of X, respectively.
Clearly,




/.1 Uniform random variables

0 t<a
F(t) =+ ast<b

1 t>b

. Ifa<t<b
Ho)=F (t):{o otherwise




_EB

& flx) 4 Fix)
1
E_ I

Density and distribution functions of a unilorm random
Figure 7.1 variable.
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#If Xis uniformly distributed over an
interval (a, b), then

E(X) =

Var(X) =
b—a
Ji2

Oy =
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Example 7.1

# Starting at 5:00 A.M., every half hour there is
a flight from San Francisco airport to Los
Angeles International airport.

# Suppose that none of these planes is

completely sold out and that they always
have room for passengers.

# A person who wants to fly to L.A. arrives at
the airport at a random time between 8:45
A.M. and 9:45 A.M.

# Find the probability that she waits (a) at most
10 minutes; (b) at least 15 minutes.




Example 7.1

1. Let the passenger arrive at the airport X minutes
pass 8:45. Then X is a uniform random variable over
the interval (0, 60). Hence the density function of X
IS given by f(x)={

0 elsewhere

2. The passenger waits at most 10 minutes :

3. The passenger waits at least 15 minutes :



/.2 Normal random variables

N
\

#Theorem 7.1 (De Moivre-Laplace
Theorem) Let X be a binomial random
variable with parameters n and p. Then
for any numbers a and b, a < b,

limP(a< 41D
>0 Jnp(L- p)

<b)=

#Note that npand Vnp-p) appearing in
this formula are, respectively, £(X) and
O
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# By this theorem, if X'is a binomial
random variable with parameters (n, p),
the sequence of probabilities

( X —np t} N=1234.

Jnp(L- p)
converges to 12" where the
function IS a distribution

function itself.




Definition

® A random variable X is called standard
normal if its distribution function is @,
that is, if

P(X <t) = D(t) =

10
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# By the fundamental theorem of calculus,
f, the density function of a standard
normal random variable, is given by

f(X) =

#The standard normal density function is
a bell-shaped curve that is symmetric
about the (see Figure 7.5).
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Figure 7.5 Graph of the standard normal dansity function.
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#Since @ is the distribution function of
the standard normal random variable,
@(t) is the area under this curve from
—oo to £.

#®Because @(c0) = and the curve is
symmetric about the y~axis, @0 ) =
Moreover,

O(-t) =

13




Correction for Continuity
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# The De Moivre-Laplace theorem approximates the
distribution of a discrete random variable by that of a
continuous one.

# Let X'be a discrete random variable with probabilit
mass function p(x), and suppose that we want to find
PGS XZJ)i<]

# Consider the histogram of X, as sketched in Figure
7.6 from /7to j. In that figure the base of each
rectangle equals 1, and the height (and therefore the
area) of the rectangle with the base midpoint kis

# Thus the sum of the areas of all rectangles
IS , Which is the exact value of PG < X <))
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Figure 76 Histogramof X fromito ;.

15



D

# Now suppose that 7 (x), the density function
of a continuous random variable, sketched in
Figure 7.7, is a good approximation to p(x).

# Then, as this figure shows, P/ < X< j) the
sum of the areas of all rectangles of the
figure, is approximately the area under 7 (x)
from /- 1/2 to j+ 1/2 rather than from /to .

Thatls, oi o x < i)~
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Figure 7.7 Histogram of X and the density function f.
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# This adjustment is called
and is necessary for approximation of the
distribution of a discrete random variable with
that of a continuous one.

# Similarly, the following corrections for
continuity are made to calculate the given
probabilities.

O(X =k) ~
O(X i) =
(X < )
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# In real-world problems, or even sometimes in
theoretical ones, to apply the De Moivre-
Laplace theorem, we need to calculate the

numerical values of for some real
numbers @ and b.
# Since has no antiderivative in terms of

elementary functions, such integrals are
approximated by numerical techniques.

# Table 1 and Table 2 of the Appendix
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Example 7.4

# Suppose that of all the clouds that are
seeded with silver iodide, 58% show

splendid growth.

#1If 60 clouds are seeded with silver
iodide, what is the probability that
exactly 35 show splendid growth?

21




1. Let X be the number of clouds that show splendid growth. Then E(X) =
=34.80and o, = =3.82

2. By correction for continuity and De Moivre-Laplace theorem,

P(X =35) =
345-348 X -348 355-34.8

_ P( . . < . < . . )
3.82 3.82 3.82
018 —x2/2 0.08 x2/2
dXx—— e " “dx
/ I /271- j—oo

- CD(O.18) — ®(~0.08) =0.5714-0.4681=0.1033

3. The exact value of P(X = 35) is
~(0.1039

The answer obtained by the De Moivre-Laplace approximation is very close to
the actual probability.
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®E£X)=0
®Var(X)=1
®0, =1
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Expected Value of Normal

# Let X be a standard normal random variable.
Then

E(X)= %E}xe‘xz’zdx =0

# because the integrand, , IS a finite
odd function, and the integral is taken from
-00 to +00.
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Variance of Normal

D
\J

# To calculate Var(X), note that
E(X?)=

# Using integration by parts, we get
(letu = x, dv = xeX/de)

[ xxe ™ 2dx = [xex’zr +_[ex’2dx 0++27 =27

o/ —00

@ Therefore, E(X%)=1, Var(X)= , and

o, =.Var(X) =1

# We have shown that the expected value of a
standard normal random variable is 0. Its standard
deviation is 1.
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Normal random variables
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# When it comes to the analysis of data, due to
the lack of parameters in the standard normal
distribution, it cannot be used. To overcome
this difficulty, mathematicians generalized the
standard normal distribution by introducing
the following density function.

# Definition A random variable X is called
, With parameters u and o, If its
density function is given by

f () =

26




Gaussian distribution

N

@ If Xis a normal random variable with
parameterspandg, we write

# One of the first applications of N(u, 02)was
given by Gauss in 1809. Gauss used N, o2)
to model the errors of observations in
astronomy.

# For this reason, the normal distribution is
sometimes called the distribution.

27




Lemma /.1
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@ If X ~ N(p,02), then Z = (X-p)/o is N(0,1).
That is, if X ~ N(u,02), the standardized X is
N(O,1).

# Proof:

We show that the distribution function of Z

W2x)[ e"*dy

@ Note that p(z <x) =

i (t—p)’
ij exp{ 53 }t

28
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Lemma /.1

#®lety
we get

P(Z<X)=

O

7T

; then dt=0dy and

\;—Z*ijeyZIZOdy:\/;?fweyZ/zdy

29




D

#The parameters 1 and othat appear in
the formula of the density function of X
are its expected value and standard
deviation, respectively.

#Note that is V(0, 1)and
X= . Hence
n E[X]= =OE[Z]+p=y

» Var[X]=Var[ o+ u]= =07

30




Figure 7.8 Density of Ny, o).
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Figure 7.9 Different normal densities with specified parameters.
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#The transformation
enables us to use Tables 1 and 2 of the
Appendix to calculate the probabilities
concerning X.
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Example 7.5

# Suppose that a Scottish soldier’s chest
size is normally distributed with mean

39.8 and standard deviation 2.05 inches,
respectively.

#\What is the probability that of 20
randomly selected Scottish soldiers, five
have a chest of at least 40 inches?

34




1. Let p be the probability that a randomly selected Scottish soldier
has a chest of 40 or more inches. If X is the normal random
variable with mean 39.8 and standard deviation 2.05

2. b= :P(X_39'8240_39'8):P(X_39'820.1)
2.05 2.05 2.05

_ =1-®(0.1) ~1-0.5398~ 0.46

3. Therefore, the probability that of 20 randomly selected Scottish
soldiers, five have a chest of at least 40 inches is

~0.33
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Example 7.7

#®The scores on an achievement test
given to 100,000 students are normally
distributed with mean 500 and standard

deviation 100.

#What should the score of a student be
to place him among the top 10% of all
students?

36




1. Letting X be a normal random variable with mean 500 and
standard deviation 100, we must find x so that P(X > x) = 0.10
or P(X < x) =0.90.

2.

=0.90= =0.90

3. From Table 2 of the Appendix, we have that ®(1.28) =~ 0.8997,
Implying that (x — 500)/100 = 1.28. This gives x = 628; therefore,
a student should earn 628 or more to be among the top 10% of
the students.
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/.3 Exponential random variables

# A typical use of the distribution
arises in situations where “event” occur
at certain points in time.

= E.g., an event is the occurrence of an
earthquake

#The distribution is often used
to model the number of events
occurring in any interval of length £

38
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# et us call the interval [0, ¢ ] and denote by the
number of events occurring in that interval.

= To obtain an expression for XM )=k}, we start by
breaking the interval [0, ¢ ] into 7 nonoverlapping

subintervals each of length

# Let the event occurrence in the n subintervals be
independent, and assume that in any given
subinterval

= one event occurs with probability p

= NO events occur with probability
39
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# Then M) has the binomial distribution
with mean

#® Letnoow poonp=a. We know that M?) is
approximately a Poisson random variable
with mean and probability mass function

PN =i)=  , i=0123--

# In the Poisson distribution, is interpreted
as the occurrence rate of events or the
expected number of events per unit time.

40
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Exponential r.v. VS. Poisson r.v.

# The set of Poisson random variables {NV(¢): t
> 0} form a

# Let X be the time of the first event, X; be the
elapsed time between the first and the

second events, X; be the elapsed time
between the second and third events, and so
on.

# The sequence of random variables {X;, X,,
X;, ... }is called the sequence of
of the Poisson process
{N(). t= 0}.

41
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e—/it (ﬂ«t) n

PIN®=n) ==

®For t= 0,
P(X; > t) = = gt
#® Therefore,
P(X; £t) = =1-—eN
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# Because of the independent and identical
Bernoulli trials, we can expect that the
interarrival time of any two consecutive
events has the same distribution as X;; that is,
the sequence { X}, X;, X;, . . . } is identically
distributed.

# Therefore, forall n> 1,

t>0

P(Xngt):P(Xlgt)z{o AN
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@& Let

|: (t) . {1_ e—/lt

0

t>0
t <0

for some A > 0. Then Fis the
distribution function of X for all 7 = 1.

It is called

distribution.
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f(t)=F (t):{o
# And
jooo Ae Mdt =
=liml-e ™) =1

bh—o0

fis a density function.

t>0
t <0

= liml-e*}

b—o0
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Definition

® A continuous random variable X is
called exponential with parameter A >
0 /f its density function is given by

t>0
f(t)=
(1) {O t <0

46
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#For an exponential random variable
with parameter A,

E(X)=0, =
Var(X) =

47
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Figure 7.10 Exponential density function with parameter .

A F(x)
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Figure 7.11 Exponential distribution function.
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# An important feature of exponential
distribution is its memoryless property.

# A nonnegative random variable Xis
called memoryless if, for all s, £ > 0,

@ is the only continuous
distribution which possesses a
memoryless property.
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Example 7.12

#The lifetime of a TV tube (in years) is
an exponential random variable with
mean 10.

#If Jim bought his TV set 10 years ago,
what is the probability that its tube will

last another 10 years?

1. Let X be the lifetime of the tube. Since X is an
exponential random variable, there is no deterioration
with age of the tube. Hence,

P(X >20| X >10) = ~0.37
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Relationship between Exponential
and Geometric

D

# Sometimes exponential is considered to
be the continuous analog of

# Exponential is the only memoryless
continuous distribution, and IS
the only memoryless discrete
distribution.
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/.4 Gamma distributions

" @ Let {N(t): t= 0} be a Poisson process, X; be
the time of the first event, and for n = 2, let
X, be the time between the (n-1)st and rth
events.

®{X, X, X5, ...} is asequence of identically
distributed exponential random variables with
mean , where A is the rate of {N(t). t = 0}.

# For this Poisson process let X be the time of
the nth event. Then Xis said to have a
distribution with parameters (n,
A).
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@ is the time we will wait for
the first event to occur, and
is the time we will wait for the rth
event to occur.

#(Clearly, a gamma distribution with
parameters (1, A)is identical with an
distribution with parameter A.
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Distribution function
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# Let Xbe a gamma random variable with
parameters (n, A).

# To find 7, the density function of X, note that
{X < & occurs if the time of the rth event is
in [0, £, that is, if the number of events
occurring in [0, £] is at least n.

# Hence F, the distribution function of X is
given by

F(t)=P(X <t) =

54




Density function

#The C

f(x) =1+

ensity function

(ﬂve—/ix (/Ix)n_l
(n-1)!

If x>0

is call

density with parameters (n, A).

0 elsewhere

ed the
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# Now we extend the definition of the gamma
density from parameters (n, A)to (r, A),
where r > 0 is not necessarily a positive
integer.

# In the formula of the gamma density function,
the term is defined only for positive
iIntegers.

# So the only obstacle in such an extension is
to find a function of rthat has the basic
property of the factorial function, namely,

n = , and
= coincides with (n — 1) when nis a positive

Integer. P
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#The function with these properties is :
(0,00 ) — R defined by

I'(r)=

#®[(r + 1) is the natural generalization of

n' for a noninteger r > 0.
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Definition
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A random variable X with probability

density function
(4 =X r-1
AT i x>0
FX)=y 1(n)
| 0 elsewhere
/s sald to have a distribution

with parameters (r, A), A >0, r > 0.
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Figure 7.12 Gamma densities for 4 = 1/4.
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Figure 7.13 Gamma densities for r = 4.
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Example 7.14

# Suppose that, on average, the number
of fparticles emitted from a radioactive
substance is four every second.

#\What is the probability that it takes at
least 2 seconds before the next two
particles are emitted?

61




1. Let N(t) denote the number of S-particles emitted from a radioactive
substance in [0, t].

2. It is reasonable to assume that {N(t): t > 0} is a Poisson process.
A=

3. »
P(X >2)= = j 16xe **dx

=[-4xe"]; - [ —4e “dx=8e°+e° ~0.003
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#For a gamma random variable with
parameters rand A,

E(X)=

Var(X) =
Jr

Oy =——
A
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Example 7.15
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# There are 100 questions in a test. Suppose
that, for alls >0 and ¢ > 0, the event that it

takes ¢ minutes to answer one question is
independent of the event that it takes s

minutes to answer another one.

# If the time that it takes to answer a question
is exponential with mean 1/2, find the
distribution, the average time, and the
standard deviation of the time it takes to do

the entire test.
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1. Let X be the time to answer a question and N(t) the
number of questions answered by time t .

Then {N(t): t> 0} 1s a Poisson process at the rate of
A= per minute.

2. Therefore, the time that it takes to complete all the
questions Is gamma with parameters (100, 2).

The average time to finish the test is =100/2 =
50 minutes with standard deviation

—./100/4 =5
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Relationship between Gamma
and Negative Binomial

#Sometimes gamma is viewed as the
continuous analog of negative
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