
Ch7: Special Continuous 
Distributions
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7.1 Uniform random variables

Suppose that X is the value of the 
random point selected from an interval 
(a, b).

Then X is called a random 
variable over (a, b). 

Let F and f be probability distribution 
and density functions of X, respectively. 
Clearly,
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7.1 Uniform random variables
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If X is uniformly distributed over an 
interval (a, b), then
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Example 7.1

Starting at 5:00 A.M., every half hour there is 
a flight from San Francisco airport to Los 
Angeles International airport. 
Suppose that none of these planes is 
completely sold out and that they always 
have room for passengers. 
A person who wants to fly to L.A. arrives at 
the airport at a random time between 8:45 
A.M. and 9:45 A.M. 
Find the probability that she waits (a) at most 
10 minutes; (b) at least 15 minutes.
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Example 7.1

1. Let the passenger arrive at the airport X minutes 
pass 8:45. Then X is a uniform random variable over 
the interval (0, 60). Hence the density function of X 
is given by

2. The passenger waits at most 10 minutes :

3. The passenger waits at least 15 minutes :
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7.2 Normal random variables

Theorem 7.1 (De Moivre-Laplace 
Theorem) Let X be a binomial random 
variable with parameters n and p. Then 
for any numbers a and b, a < b,

Note that np and              appearing in 
this formula are, respectively, E(X) and 
σX.
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By this theorem, if X is a binomial 
random variable with parameters (n, p), 
the sequence of probabilities

converges to , where the 
function                     is a distribution 
function itself.
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Definition

A random variable X is called standard 
normal if its distribution function is Φ, 
that is, if
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By the fundamental theorem of calculus, 
f , the density function of a standard 
normal random variable, is given by

The standard normal density function is 
a bell-shaped curve that is symmetric 
about the (see Figure 7.5).
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Since Φ is the distribution function of 
the standard normal random variable, 
Φ(t) is the area under this curve from 
−∞ to t . 

Because Φ(∞) =      and the curve is 
symmetric about the y-axis, Φ(0) = 
Moreover,

Φ(−t) =
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Correction for Continuity

The De Moivre-Laplace theorem approximates the 
distribution of a discrete random variable by that of a 
continuous one. 
Let X be a discrete random variable with probability 
mass function p(x), and suppose that we want to find 
P(i ≤ X ≤ j), i < j. 
Consider the histogram of X, as sketched in Figure 
7.6 from i to j . In that figure the base of each 
rectangle equals 1, and the height (and therefore the 
area) of the rectangle with the base midpoint k is

Thus the sum of the areas of all rectangles 
is               , which is the exact value of P(i ≤ X ≤ j).
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Now suppose that f (x), the density function 
of a continuous random variable, sketched in 
Figure 7.7, is a good approximation to p(x).

Then, as this figure shows, P(i ≤ X ≤ j), the 
sum of the areas of all rectangles of the 
figure, is approximately the area under f (x) 
from i − 1/2 to j + 1/2 rather than from i to j . 
That is,
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This adjustment is called 
and is necessary for approximation of the 
distribution of a discrete random variable with 
that of a continuous one.
Similarly, the following corrections for 
continuity are made to calculate the given 
probabilities.
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In real-world problems, or even sometimes in 
theoretical ones, to apply the De Moivre-
Laplace theorem, we need to calculate the 
numerical values of for some real 
numbers a and b. 

Since            has no antiderivative in terms of 
elementary functions, such integrals are 
approximated by numerical techniques.

Table 1 and Table 2 of the Appendix
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Tables 1 and 2
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Example 7.4

Suppose that of all the clouds that are 
seeded with silver iodide, 58% show 
splendid growth. 

If 60 clouds are seeded with silver 
iodide, what is the probability that 
exactly 35 show splendid growth?
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1. Let X be the number of clouds that show splendid growth. Then E(X) =  
= 34.80 and 

2. By correction for continuity and De Moivre-Laplace theorem,

3. The exact value of P(X = 35) is

The answer obtained by the De Moivre-Laplace approximation is very close to 
the actual probability.
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E(X) = 0

Var(X) = 1

σX = 1
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Expected Value of Normal

Let X be a standard normal random variable. 

Then

because the integrand,           , is a finite 
odd function, and the integral is taken from 
-∞ to +∞. 
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Variance of Normal
To calculate Var(X), note that

Using integration by parts, we get 
(let u = x, dv = xe-x2/2dx)

Therefore, E(X2)=1, Var(X)= , and  

We have shown that the expected value of a 
standard normal random variable is 0. Its standard 
deviation is 1.
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Normal random variables

When it comes to the analysis of data, due to 
the lack of parameters in the standard normal 
distribution, it cannot be used. To overcome 
this difficulty, mathematicians generalized the 
standard normal distribution by introducing 
the following density function.

Definition A random variable X is called 
, with parameters μ and σ, if its 

density function is given by

)(xf
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Gaussian distribution

If X is a normal random variable with 
parametersμandσ, we write 

One of the first applications of N(μ, σ 2) was 
given by Gauss in 1809. Gauss used N(μ, σ 2) 
to model the errors of observations in 
astronomy. 

For this reason, the normal distribution is 
sometimes called the distribution.
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Lemma 7.1

If X ~ N(μ,σ2), then Z = (X-μ)/σ is N(0,1). 
That is, if X ~ N(μ,σ2), the standardized X is 
N(0,1).

Proof: 

We show that the distribution function of Z 
is

Note that 
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Lemma 7.1

Let y ; then dt=σdy and 
we get
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The parameters μ and σ that appear in 
the formula of the density function of X 
are its expected value and standard 
deviation, respectively.

Note that is N(0, 1) and 
X= . Hence

 E[X]= =σE[Z]+μ= μ

 Var[X]=Var[σZ+μ]= =σ2
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The transformation 
enables us to use Tables 1 and 2 of the 
Appendix to calculate the probabilities 
concerning X.
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Example 7.5

Suppose that a Scottish soldier’s chest 
size is normally distributed with mean 
39.8 and standard deviation 2.05 inches, 
respectively. 

What is the probability that of 20 
randomly selected Scottish soldiers, five 
have a chest of at least 40 inches?
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1. Let p be the probability that a randomly selected Scottish soldier 

has a chest of 40 or more inches. If X is the normal random 

variable with mean 39.8 and standard deviation 2.05

2.

3. Therefore, the probability that of 20 randomly selected Scottish 

soldiers, five have a chest of at least 40 inches is
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Example 7.7

The scores on an achievement test 
given to 100,000 students are normally 
distributed with mean 500 and standard 
deviation 100. 

What should the score of a student be 
to place him among the top 10% of all 
students?
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1. Letting X be a normal random variable with mean 500 and 
standard deviation 100, we must find x so that P(X ≥ x) = 0.10 
or P(X < x) = 0.90.

2.

3. From Table 2 of the Appendix, we have that Φ(1.28) ≈ 0.8997, 
implying that (x − 500)/100 ≈ 1.28. This gives x ≈ 628; therefore, 
a student should earn 628 or more to be among the top 10% of 
the students.

90.0                         90.0                                
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7.3 Exponential random variables

A typical use of the distribution 
arises in situations where “event” occur 
at certain points in time.

 E.g., an event is the occurrence of an 
earthquake

The distribution is often used 
to model the number of events 
occurring in any interval of length t.
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Let us call the interval [0,t ] and denote by the 
number of events occurring in that interval.

 To obtain an expression for P{N(t)=k}, we start by 
breaking the interval [0,t ] into n nonoverlapping 
subintervals each of length 

Let the event occurrence in the n subintervals be 
independent, and assume that in any given 
subinterval

 one event occurs with probability p

 no events occur with probability
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Then N(t) has the binomial distribution 
with mean
Let                    . We know that N(t) is 
approximately a Poisson random variable 
with mean    and probability mass function 

In the Poisson distribution, is interpreted 
as the occurrence rate of events or the 
expected number of events per unit time.
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Exponential r.v. VS. Poisson r.v.

The set of Poisson random variables {N(t): t 
≥ 0} form a    

Let X1 be the time of the first event, X2 be the 
elapsed time between the first and the 
second events, X3 be the elapsed time 
between the second and third events, and so 
on. 

The sequence of random variables {X1, X2, 
X3, . . . } is called the sequence of 

of the Poisson process 
{N(t): t ≥ 0}.
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For t ≥ 0,

P(X1 > t) = = e−λt

Therefore,

P(X1 ≤ t) = = 1 − e−λt
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Because of the independent and identical 
Bernoulli trials, we can expect that the 
interarrival time of any two consecutive 
events has the same distribution as X1; that is, 
the sequence {X1, X2, X3, . . . } is identically 
distributed. 

Therefore, for all n ≥ 1,
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Let

for some λ > 0. Then F is the 
distribution function of Xn for all n ≥ 1. 
It is called distribution.
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And

f is a density function.
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Definition

A continuous random variable X is 
called exponential with parameter λ > 
0 if its density function is given by 
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For an exponential random variable 
with parameter λ,
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An important feature of exponential 
distribution is its memoryless property. 

A nonnegative random variable X is 
called memoryless if, for all s, t ≥ 0,

is the only continuous 
distribution which possesses a 
memoryless property.
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Example 7.12

The lifetime of a TV tube (in years) is 
an exponential random variable with 
mean 10. 

If Jim bought his TV set 10 years ago, 
what is the probability that its tube will 
last another 10 years?

1. Let X be the lifetime of the tube. Since X is an 
exponential random variable, there is no deterioration 
with age of the tube. Hence,

37.0                                                  )10|20(  XXP
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Relationship between Exponential 
and Geometric

Sometimes exponential is considered to 
be the continuous analog of  

Exponential is the only memoryless 
continuous distribution, and  is 
the only memoryless discrete 
distribution.
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7.4 Gamma distributions
Let {N(t): t ≥ 0} be a Poisson process, X1 be 
the time of the first event, and for n ≥ 2, let 
Xn be the time between the (n−1)st and nth 
events.

{X1, X2, X3, . . . } is a sequence of identically 
distributed exponential random variables with 
mean , where λ is the rate of {N(t): t ≥ 0}. 

For this Poisson process let X be the time of 
the nth event. Then X is said to have a 

distribution with parameters (n, 
λ).
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is the time we will wait for 
the first event to occur, and 
is the time we will wait for the nth 
event to occur. 

Clearly, a gamma distribution with 
parameters (1, λ) is identical with an 

distribution with parameter λ.
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Distribution function

Let X be a gamma random variable with 
parameters (n, λ). 

To find f , the density function of X, note that 
{X ≤ t} occurs if the time of the nth event is 
in [0, t], that is, if the number of events 
occurring in [0, t] is at least n. 

Hence F, the distribution function of X, is 
given by

 )()( tXPtF



55

Density function

The density function

is called the 
density with parameters (n, λ).
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Now we extend the definition of the gamma 
density from parameters (n, λ) to (r, λ), 
where r > 0 is not necessarily a positive 
integer.
In the formula of the gamma density function, 
the term is defined only for positive 
integers. 
So the only obstacle in such an extension is 
to find a function of r that has the basic 
property of the factorial function, namely, 
 n! = , and 
 coincides with (n − 1)! when n is a positive 

integer.
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The function with these properties is : 
(0,∞) → R defined by

Γ(r + 1) is the natural generalization of 
n! for a noninteger r > 0.

 )(r
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Definition

A random variable X with probability 
density function

is said to have a distribution 
with parameters (r, λ), λ > 0, r > 0.
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Example 7.14

Suppose that, on average, the number 
of β-particles emitted from a radioactive 
substance is four every second. 

What is the probability that it takes at 
least 2 seconds before the next two β-
particles are emitted?
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1. Let N(t) denote the number of β-particles emitted from a radioactive 

substance in [0, t].

2. It is reasonable to assume that {N(t): t ≥ 0} is a Poisson process.
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For a gamma random variable with 
parameters r and λ,
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Example 7.15

There are 100 questions in a test. Suppose 
that, for alls >0 and t > 0, the event that it 
takes t minutes to answer one question is 
independent of the event that it takes s 
minutes to answer another one. 

If the time that it takes to answer a question 
is exponential with mean 1/2, find the 
distribution, the average time, and the 
standard deviation of the time it takes to do 
the entire test.
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1. Let X be the time to answer a question and N(t) the 

number of questions answered by time t .

Then {N(t): t ≥ 0} is a Poisson process at the rate of    

λ = per minute.

2. Therefore, the time that it takes to complete all the 

questions is gamma with parameters (100, 2).

The average time to finish the test is = 100/2 = 

50 minutes with standard deviation

54/100             
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Relationship between Gamma 
and Negative Binomial

Sometimes gamma is viewed as the 
continuous analog of negative  


