
Ch5: Special Discrete 
Distributions
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5.1 Bernoulli and binomial 
random variables

The sample space of a Bernoulli trial contains two 
points, s and f . 

The random variable defined by X(s) = 1 and X(f) = 
0 is called a Bernoulli random variable. 

If p is the probability of a success, then 1 − p 
(sometimes denoted q) is the probability of a failure. 

Hence the probability mass function of X is
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Bernoulli random variable

E(X) = 

E(X2) = 0 · P(X = 0) + 1 · P(X = 1) = p,

Var(X) = 

)1( ppX 
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Example 5.1

If in a throw of a fair die the event of obtaining 4 or 
6 is called a success, and the event of obtaining 1, 2, 
3, or 5 is called a failure, then it is a Bernoulli trial. 

Get the probability mass function, expected value, 
and variance.

1. p = 1/3

2. 

3. E(X) = p = 1/3, Var(X)=p(1-p)=1/3(1-1/3)=2/9
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Let X1, X2, X3, … be a sequence of 

Bernoulli random variables. 

If, for all ji=0 or 1, the sequence of 
events {X1=j1}, {X2=j2}, {X3=j3}, …

are independent, we say that {X1, 
X2, X3, …} and the corresponding 

Bernoulli trials are
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Binomial random variable

If n Bernoulli trials all with probability of 
success p are performed independently, 
then X, the number of successes, is 
called a binomial with parameters n and 
p. The set of possible values of X is {0, 
1, 2, . . . , n}.

We write as in short.
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Binomial random variable

Theorem 5.1 Let X be a binomial random 
variable with parameters n and p. Then p(x), 
the probability mass function of X, is

Definition The function p(x) given above is 
called the binomial probability mass 
function with parameters (n, p).
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Example 5.3

In a county hospital 10 babies, of whom six were 
boys, were born last Thursday. 

What is the probability that the first six births were 
all boys? Assume that the events that a child born is 
a girl or is a boy are equiprobable.

1.  Let A be the event that the first six births were all boys and the 
last four all girls. Let X be the number of boys; then X is 
binomial with parameters 10 and 1/2.

2. 
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Example 5.4

In a small town, out of 12 accidents that occurred in 
June 1986, four happened on Friday the 13th. 

Is this a good reason for a superstitious person to 
argue that Friday the 13th is inauspicious?

1. Suppose the probability that each accident occurs on Friday the 

13th is 1/30.

2. the probability of at least four accidents on Friday the 13th is

3. Since the probability of four or more of these accidents 
occurring on Friday the 13th is very small, this is a good reason 
for superstitious persons to argue that Friday the 13th is 
inauspicious.
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Let X be a binomial random variable with 
parameters (n, p), 0 < p < 1, and probability 
mass function p(x). 

We will now find the value of X at which p(x) 
is maximum. 

For any real number t , let [t ] denote the 
largest integer less than or equal to t . We 
will prove that p(x) is maximum at x =       
To do so, we note that
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This equality shows that p(x) > p(x−1) if and only if 
, or, equivalently, if and only if  

Hence as x changes from 0 to [(n + 1)p], p(x)  .

As x changes from [(n + 1)p] to n, p(x) .

The maximum value of p(x) [the peak of the 
graphical representation of p(x)] occurs at  .

Figure 5.1 shows binomial random variables with 
parameters (5, 1/2), (10, 1/2), and (20, 1/2).
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Expectations and Variances of 
Binomial Random Variables

E(X) = np, Var(X) = , σX =
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5.2 Poisson random variable

In many cases, direct calculation of p(x)

for binomial random variable is not possible, 
because even for moderate values of n, n! 
exceeds the largest integer that a computer 
can store.
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Poisson random variable

In 1837 French mathematician Simeon-Denis Poisson 
introduced the following procedure to obtain the 
formula that approximates p(x) when
remains a fixed quantity of moderate value.
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Poisson random variable

German-Russian mathematician L. V. 
Bortkiewicz demonstrated its significance for 
both in probability theory and its applications. 

Among other things, Bortkiewicz argued that 
since

Poisson’s approximation by itself is a 
probability mass function.
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Definition

A discrete random variable X with possible 
values 0, 1, 2, 3, . . . is called Poisson with 
parameter λ, λ > 0, if

 ,3 ,2 ,1 ,0     ,                 )(  iiXP



19

  



 ee

XE

      

                                       )(

 





X

XVar

XE

 )(

 )( 2



20

Under the conditions specified in our 
discussion, probabilities can be 
approximated by probabilities. 

Such approximations are generally good ifp < 
0.1 and np ≤ 10. 

If np > 10, it would be more appropriate to 
use normal approximation, discussed in 
Section 7.2.
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Poisson Example

Let X be the number of misprints on a 
document page typed by a secretary. 
Then X is a          random variable if a 
word is called a success, provided that 
it is misprinted! 
Since misprints are rare events, the 
number of words is large, and , the 
average number of misprints, is of 
moderate value, X is approximately a 
Poisson random variable.
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Example 5.11

Suppose that, on average, in every three pages of a 
book there is one typographical error. If the number 
of typographical errors on a single page of the book 
is a Poisson random variable, what is the probability 
of at least one error on a specific page of the book?

1. Let X be the number of errors on the page we are interested in. 
Then X is a Poisson random variable with E(X) = 1/3.

2.

3. 

 )(  nXP

 )1(XP



23

5.3 Other discrete random 
variables

Geometric Random Variables: 
 suppose that a sequence of independent Bernoulli 

trials, each with probability of success p, 0 < p < 
1, are performed.

 Let X be the number of experiments until the first 
success occurs. Then X is a discrete random 
variable called . 

 It is defined on S, its set of possible values is {1, 
2, . . . }, and

P(X = n) =            , n = 1, 2, 3, . . . .



24

Definition The probability mass function

is called geometric.
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Expected Value of Geometric

Find the expected value of a geometric 
random variable. 

Solution With q = 1 - p we have that  
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Variance of Geometric

Find the variance value of a geometric random 
variable. 

Solution To determine Var(X) let us first compute 
E[X2]. With q = 1 – p ,

Hence, since E[X] = 1/p ,
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Example 5.18

From an ordinary deck of 52 cards we draw cards at 
random, with replacement, and successively until an 
ace is drawn. What is the probability that at least 10 
draws are needed?

1. Let X be the number of draws until the first ace.

2. X is geometric with parameter p = 1/13.

3. 
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Remark

There is a shortcut to the solution of 
this problem: 

 The probability that at least 10 draws are 
needed to get an ace is the same as the 
probability that in the first nine draws 
there are no aces. 

 This is equal to
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Memoryless property

Let X be a geometric random variable with 
parameter p, 0 < p < 1. Then, for all positive 
integers n and m,

In successive independent Bernoulli trials, the 
probability that the next n outcomes are all 
failures does not change if we are given that 
the previous m successive outcomes were all 
failures.
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Geometric random variable is the only memoryless 
discrete random variable in the following sense.

Let X be a discrete random variable with the set of 
possible values {1, 2, 3 . . . }. If for all positive 
integers n and m,

P(X > n + m | X > m) = 

then X is a geometric random variable. That is, there 
exists a number p, 0 < p < 1, such that

P(X = n) = , n≥ 1.
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Example 5.19

A father asks his sons to cut their backyard lawn. 
Since he does not specify which of the three sons is 
to do the job, each boy tosses a coin to determine 
the odd person, who must then cut the lawn.
In the case that all three get heads or tails, they 
continue tossing until they reach a decision. Let p be 
the probability of heads and q = 1 − p, the 
probability of tails.
(a) Find the probability that they reach a decision in 
less than n tosses.
(b) If p = 1/2, what is the minimum number of 
tosses required to reach a decision with probability 
0.95?
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Example 5.19

(a)

1. The probability that they reach a decision on a certain round of 
coin tossing is 

2. Let X be the number of tosses until the reach a decision; X is a 
geometric random variable with parameter 3pq.

(b)

1. Find the minimum n so that                             . This gives 

. But 

2. Therefore, This gives n >= 2.16; hence the smallest n is 3.
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Negative Binomial Random 
Variables

Suppose that a sequence of independent 
Bernoulli trials, each with probability of 
success p, 0 < p < 1, is performed. 

Let X be the number of experiments until the 
r-th success occurs. 

Then X is a discrete random variable called a 
negative binomial. Its set of possible 
values is {r, r + 1, r + 2, r + 3, . . . } and

 )( nXP
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Definition The probability mass function

is called negative binomial with 
parameters (r, p).
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Expected Value of Negative 
Binomial

Compute the expected value of a negative binomial 
random variable with parameters r and p. 
Solution

where Y is a negative binomial random 
variable with parameters r+1, p.  Setting k=1 
in the preceding equation yields
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Variance of Negative Binomial 

Compute the variance of a negative binomial random 
variable with parameters r and p. 

Solution Setting k = 2 in the preceding equation, 
and using the formula for the expected value of a 
negative binomial random variable, gives that

Hence, since E[X] = 1/p ,
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Example 5.20

Sharon and Ann play a series of backgammon 
games until one of them wins five games. 
Suppose that the games are independent and 
the probability that Sharon wins a game is 
0.58.

(a) Find the probability that the series ends 
in seven games.

(b) If the series ends in seven games, what 
is the probability that Sharon wins?
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Example 5.20

(a) Let X be the number of games until Sharon wins five games. 
Let Y be the number of games until Ann wins five games. X and 
Y are negative binomial with parameters (5, 0.58) and (5, 0.42).

The probability that the series ends in seven games is

(b) Let A be the event that Sharon wins and B be the event that 
the series ends in seven games. Then the desired probability is 

 )7()7( YPXP


)B(

)(
)|(

P

ABP
BAP



39

Example 5.21 (Attrition Ruin 
Problem)

Two gamblers play a game in which in each 
play gambler A beats B with probability p, 0 
< p < 1, and loses to B with probability q = 1 
− p.

Suppose that each play results in a forfeiture 
of $1 for the loser and in no change for the 
winner.

If player A initially has a dollars and player B 
has b dollars, what is the probability that B 
will be ruined?
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1. Let Ei be the event that, in the first b+i plays, B loses b times. 
Let A∗ be the event that A wins.

2. If every time that A wins is called a success, Ei is the event that 
the b th success occurs on the (b + i) th play.

3. Therefore, 
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Hypergeometric Random 
Variables

Suppose that, from a box containing D 
defective and N − D nondefective items, 
n are drawn at random and without 
replacement. 

Furthermore, suppose that the number 
of items drawn does not exceed the 
number of defective or the number of 
nondefective items. That is, suppose 
that n ≤ min(D, N −D).
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Hypergeometric Random 
Variables (Cont.)

Let X be the number of defective items 
drawn. Then X is a discrete random variable 
with the set of possible values {0, 1, . . . n}, 
and a probability mass function

n ..., 2, 1, 0,   x,                                )()(  xXPxp
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Definition Let N, D, and n be positive 
integers with n ≤ min(D,N − D). Then

is said to be a hypergeometric probability 
mass function
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Expected Value of Hypergeometric

Determine the expected value of X, a 
hypergeometric random variable with parameters n, 
N, D. 

Solution

Using the identities
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Expected Value of Hypergeometric

We obtain that

Where Y is a hypergeometric random variable with 
parameters n-1, N-1, D-1. Hence, upon setting k=1 
we see that 
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Variance of Hypergeometric

Determine the variance of X, a hypergeometric 
random variable with parameters n, N, D. 

Solution

As E[X] = nD/N we can conclude that
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Variance of Hypergeometric

If we let p=D/N denote the fraction of 
items that are defective, then it follows 
from above equation, after a little 
algebra, that
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Example 5.23

In 500 independent calculations a scientist 
has made 25 errors. If a second scientist 
checks seven of these calculations randomly, 
what is the probability that he detects two 
errors? Assume that the second scientist will 
definitely find the error of a false calculation.

1.  Let X be the number of errors found by the second scientist. 
Then X is hypergeometric with N = 500, D = 25, and n = 7.

2. 
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Example 5.24

In a community of a + b potential voters, a 
are for abortion and b (b < a) are against it. 

Suppose that a vote is taken to determine the 
will of the majority with regard to legalizing 
abortion. 

If n (n < b) random persons of these a + b 
potential voters do not vote, what is the 
probability that those against abortion will 
win?
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1.  Let X be the number of those who do not vote and are for 
abortion. The persons against abortion will win if and only if 

2.  




 )
2

(
nba

XP
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Remark 5.2

If the n items that are selected at 
random from the D defective and N −D 
nondefective items are chosen with 
replacement rather than without 
replacement, then X, the number of 
defective items, is a binomial random 
variable with parameters n andD/N. 
Thus

 )( xXP



52

Remark 5.2 (Cont.)

Now, if N is very large, it is not that important 
whether a sample is taken with or without 
replacement. 

Therefore, for large N, the binomial probability 
mass function is an excellent approximation for 
the hypergeometric probability mass function, 
which can be stated mathematically as follows.
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