
Ch4: Distribution 
Functions and Discrete 
Random Variables
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4.1 Random variables

In rolling two fair dice, X is the sum, 
then X can only assume the values 2, 3, 
4, . . . , 12 with the following 
probabilities:

 P(X = 2) = P({(1, 1)})= 1/36,

 P(X = 3) = P({ (1, 2), (2, 1) })= 2/36,

 P(X = 4) = P({ })=
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and, similarly,

Sum, i 5 6 7 8 9 10 11 12

P(X=i) 4/36 5/36 5/36 4/36 3/36 2/36
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Definition

Let S be the sample space of an experiment.

A random variable X is a function that 
assigns a real value to each outcome in S.

For any set of real numbers A, the prob. 
that X will assume a value that is contained in 
A is equal to the prob. that the outcome of the 
experiment is contained in X-1(A).

That is, P{X∈A}=P(X-1(A)), where X-1(A) is the 
event consisting of all points s∈S such that 
X(s)∈A.



5

Definition (cont.)

In the previous fair dice rolling example, 

 X({(1, 1)})=2, X({(1, 2)})=3, X({(2, 1)})=3, 
etc.

 If A={3,4}

 X-1(A)={(1, 2), (2, 1), (1, 3), (2, 2), (3, 1)}

 P{X∈A}=P(X-1(A))=2/36+3/36=5/36
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Example 4.3

In the United States, the number of twin births is 
approximately 1 in 90. 

Let X be the number of births in a certain hospital 
until the first twins are born. X is a random variable. 

Denote twin births by T and single births by N. Then 
X is a real-valued function defined on the sample 
space

S = {T,NT,NNT,NNNT, . . . }  by

The set of all possible values of X is {1, 2, 3, . . . } and
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Let X and Y be two random variables over the 
same sample space S; then and 

are real-valued functions 
having the same domain. 

Therefore, we can form the functions X + Y ; 
X − Y ; aX + bY , where a and b are 
constants; XY; and X/Y, where Y ≠ 0.

Similarly, functions such as X2, sin X, cosX2, 
eX, and X3 − 2X are random variables.
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Example 4.5

The diameter of a flat metal disk manufactured by 
a factory is a random number between 4 and 4.5. 

What is the probability that the area of such a flat 
disk chosen at random is at least 4.41π?

1. D: the diameter of the metal disk selected at random

2.

3. the length of D is a random number in the interval  
(4, 4.5) =>

4.
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Example 4.6

A random number is selected from the 
interval (0, π/2). What is the 
probability that its sine is greater than 
its cosine?

1. X：the selected number

2. 
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4.2 Distribution functions

Usually, when dealing with a random 
variable X, for constants a and b (b < 
a), computation of one or several of the 
probabilities 

 P(X = a), P(X < a), P(X ≤ a), P(X > b), 

P(X ≥ b), P(b ≤ X ≤ a), P(b < X ≤ a), 

P(b ≤ X < a), and P(b < X < a) 

is our ultimate goal.
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Definition

If X is a random variable, then the function F 
defined on (−∞,+∞) by F(t) = 
is called the distribution function of X.

Since F  “accumulates” all of the probabilities 
of the values of X up to and including t , 
sometimes it is called the cumulative 
distribution function ( ) of X. 
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Properties

1. F is nondecreasing; that is, if t < u, then 

F (t)     F (u).

1. Lim t →∞ F (t) = 1.

2. Lim t →-∞ F (t) = 0.

3. F is right continuous. That is, for every t ∈
R , F (t+) = F (t). This means that if tn is a 
decreasing sequence of real numbers 
converging to t , then 

lim n→∞ F (tn) =
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Distribution functions
Event 
concerning X

Probability 
of the event 
in terms of F

Event 
concerning X

Probability 
of the event 
in terms of F

X ≤ a F(a) a < X ≤ b

X > a a < X < b F(b-) – F(a)

X < a F(a-) a ≤ X ≤ b F(b) – F(a-)

X ≥ a 1 – F(a-) a ≤ X < b F(b-) –F(a-)

X = a
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Example 4.7

The distribution function of a random variable X is 
given by

where the graph of F is shown in Figure 4.1. 
Compute the following quantities:

(a) P(X < 2); (b) P(X = 2); (c) P(1 ≤ X < 3);

(d) P(X > 3/2); (e) P(X = 5/2); (f) P(2 < X ≤ 7).
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Example 4.10

The sales of a convenience store on a randomly selected day 
are X thousand dollars, where X is a random variable with a 
distribution function of the following form:

Suppose that this convenience store’s total sales on any given 
day are less than $2000.
(a) Find the value of k.
(b) Let A and B be the events that tomorrow the store’s total 
sales are between 500 and 1500 dollars, and over 1000 dollars, 
respectively. Find P(A) and P(B).
(c) Are A and B independent events?























21

21)4(

10)2/1(

00

)(
2

2

t

tttk

tt

t

tF



18

(a) Since X < 2, we have that P(X < 2) = 1, 

so F(2−) = 1.   This gives k(8−4) = 1, so k =  

(b)

(c) 






)1()(

16

13

8

1

16

15
)

2

1
()

2

3
(

)
2

1
()

2

3
()

2

3

2

1
()(

XPBP

FF

FFXPAP

 )
2

3
1()( XPABP

Since P(AB) ≠ P(A)P(B), A and B are not independent.
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Remark 4.1

Suppose that F is a right-continuous, 
nondecreasing function on (−∞,∞) that 
satisfies limt →∞ F(t) =     and limt →−∞ F(t) =

It can be shown that there exists a sample 
space S with a probability function and a 
random variable X over S such that the 
distribution function of X is F. 

Therefore, a function is a distribution function 
if it satisfies the conditions specified in this 
remark.
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4.3 Discrete random variables

Number of tails in flipping a coin twice
 finite set  

Number of flips of until the first heads
 countable set  

Amount of next year’s rainfall
 uncountable set  

Whenever the set of possible values that a 
random variable X can assume is at most 
countable, X is called discrete.
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Definition

The probability mass function (also called 
probability function or discrete probability 
function) p of a random variable X whose set of 
possible values is {x1, x2, x3, . . . } is a function from 
R to R that satisfies the following properties.

(a) p(x) = 0 if x      {x1, x2, x3, . . . } .

(b) p(xi) = P( ) 

and hence p(xi) ≥ 0 (i = 1, 2, 3, . . . ).

(c)
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Example 4.12

Can a function of the form

be a probability mass function?
1. A probability mass function should have three 

properties:

(1) p(x) must be zero at all points except on a finite 
or countable set. (It is satisfied.)

(2) p(x) should be nonnegative. This is satisfied if 
and only if
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Example 4.12

(3)                    , This condition is satisfied if and 
only if                    . This happens precisely when

where the second equality follows from the 
geometric series theorem. Thus only for c=1/2, a 
function of the given form is a probability mass 
function.
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Example 4.13

Let X be the number of births in a hospital until the 
first girl is born. Determine the probability mass 
function and the distribution function of X. Assume 
that the probability is 1/2 that a baby born is a girl.

1. X is a random variable that can assume any positive 
integer i. p(i) = P(X=i), and X = i occurs if the first i -
1 birth are all boys and the ith birth is a girl. Thus 

for i = 1, 2, 3,…, and p(x) = 
0 if x    1, 2, 3,…

2. To determine       . In general for

 ip


 tF ntn 1



25

Example 4.13

by the partial sum formula for geometric series. Thus
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4.4 Expectations of discrete 
random variables

Definition The expected value of a discrete 
random variable X with the set of possible values A 
and probability mass function p(x) is defined by

We say that E(X) exists if this sum converges 
absolutely.
The expected value of a random variable X is also 
called the mean, or the mathematical 
expectation, or simply the expectation of X. It is 
also occasionally denoted by E[X], EX, μX, or μ.

)(XE
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Example 4.17

In the lottery of a certain state, players pick six 
different integers between 1 and 49, the order of 
selection being irrelevant. 

The lottery commission then selects six of these 
numbers at random as the winning numbers. 

A player wins the grand prize of $1,200,000 if all six 
numbers that he has selected match the winning 
numbers. He wins the second and third prizes of 
$800 and $35, respectively, if exactly five and four of 
his six selected numbers match the winning numbers. 

What is the expected value of the amount a player 
wins in one game?
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1. Let X be the amount that a player wins in one game. 
The possible values of X are 1,200,000; 800; 35; and 
0. The probabilities are
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2. This show that on the average players will win 13 
cents per game. If the cost per game is 50 cents, 
then, on the average, a player will lose 37 cents per 
game. Therefore, a player who plays 10,000 games 
over several years will loss approximately $
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Example 4.20

The tanks of a country’s army are numbered 
1 to N. 

In a war this country loses n random tanks to 
the enemy, who discovers that the captured 
tanks are numbered. 

IfX1,X2, . . . ,Xn are the numbers of the 
captured tanks, what is E(max Xi)? How can 
the enemy use E(max Xi) to find an estimate 
of N, the total number of this country’s tanks?
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1. Let Y = max Xi; then
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2.          is the coefficient of     in the polynomial 

Since,

3. The coefficient of     in the polynomial is

4. We obtain  
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5. To estimate N, the total number of this country’s 
tanks, we obtain 

6. For example, the enemy captures 12 tanks and the 
maximum of the numbers of the tanks captured is 
117, then we get 

N
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Theorem 4.1

If X is a constant random variable, that 
is, if P(X = c) = 1 for a constant c, then 
E(X) = 

Proof: There is only one possible value 
for X and that is c; hence E(X) = c · P(X 
= c) = c · 1 = c.
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Theorem 4.2

Let X be a discrete random variable with 
set of possible values A and probability 
mass function p(x), and let g be a real-
valued function. Then g(X) is a random 
variable with

)]([ XgE
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Corollary

Let X be a discrete random variable; g1, 
g2, . . . , gn be real-valued functions, and let 
α1, α2, . . . , αn be real numbers. Then

 This corollary implies that E(X) is linear. That is, if 
α, β ∈ R, then

E(αX + β) =
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Example 4.23

The probability mass function of a 
discrete random variable X is given by

What is the expected value of X(6 − X)?
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Example 4.24

A box contains 10 disks of radii 1, 
2, . . . , and 10, respectively. What is 
the expected value of the area of a disk 
selected at random from this box?

1. Let the radius of the disk be R

R is a random variable with the probability mass 
function p(x) = 1/10 if x = 1, 2, . . . , 10, and p(x) = 
0 otherwise.

2. 
 5.38                                         )( 2 RE
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4.5 Variances and moments of 
discrete random variables

Definition Let X be a discrete random 
variable with a set of possible values A, 
probability mass function p(x), and E(X) = μ. 
Then σX and Var(X), called the standard 
deviation and the variance of X, 
respectively, are defined by

and Var(X) =

 Note that by this definition and Theorem 4.2,
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Example 4.26

Karen is interested in two games, Keno and Bolita. 

To play Bolita, she buys a ticket for $1, draws a ball 
at random from a box of 100 balls numbered 1 to 
100. If the ball drawn matches the number on her 
ticket, she wins $75; otherwise, she loses. 

To play Keno, Karen bets $1 on a single number that 
has a 25% chance to win. If she wins, they will 
return her dollar plus two dollars more; otherwise, 
they keep the dollar. 

Let B and K be the amounts that Karen gains in one 
play of Bolita and Keno, respectively. Calculate E(B), 
E(K), Var(B), and Var(K). 
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1. Let B and K be the amounts that Karen gains in one 
play of Bolita and Keno, respectively.

2. E(B) = = −0.25

E(K) = (2)(0.25) + (−1)(0.75) = −0.25

3. Var(B) = 

Var(K) = E[(K − μ)2]= (2 + 0.25)2(0.25) + (−1 + 
0.25)2(0.75) = 1.6875
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Theorem 4.3

Var(X) = E(X2) − [E(X)]2

Proof: By the definition of variance,

 Since Var(X) ≥ 0, for any discrete random variable 
X,
[E(X)]2 ≤ E(X2)
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Example 4.27

What is the variance of the random 
variable X, the outcome of rolling a 
fair die?

1. The probability mass function of X is given by 

p(x) =  

2. 
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Theorem 4.4

Let X be a discrete random variable 
with the set of possible values A, and 
mean μ. Then Var(X) = 0 if and only if 
X is a constant with probability
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Theorem 4.5

Let X be a discrete random variable; 
then for constants a and b we have that

Var(aX + b) =  

σaX+b = |a|σX
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Example 4.28

Suppose that, for a discrete random variable 
X, E(X) = 2 and E[X(X − 4)]= 5. Find the 
variance and the standard deviation of −4X + 
12.

1. By the Corollary of Theorem 4.2, E[X2 – 4X] = 5 implies that 
E(X2) – 4E(X) = 5

2. Substituting E(X) in this relation gives E(X2) = 13.

3. Var(X) = E(X2) − [E(X)]2 = 13 − 4 = 9,

σX = √9 = 3

4. Var(−4X + 12) =  

σ −4X+12 =  
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Definition

Let X and Y be two random variables 
and ω be a given point. If for all t > 0,

P(|Y − ω| ≤ t)      P(|X − ω| ≤ t),

then we say that X is more 
concentrated about ω than is Y .
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Theorem 4.6

Suppose that X and Y are two random 
variables with E(X) = E(Y) = μ. If X is 
more concentrated about μ than is Y , 
then 
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Moment

Let X be a random variable with expected value μ. 
Let c be a constant, n ≥ 0 be an integer, and r > 0 
be any real number, integral or not. The expected 
value of X, E(X), is also called the first moment of 
X.

E[g(X)] Definition

E(Xn)

E(|X|r)

E(X-c)

E[(X-μ)n]

The nth moment of X

The rth absolute moment of X

The 1st moment of X about c

The nth moment of X about c

The nth central moment of X
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4.6 Standardized random 
variables

Let X be a random variable with mean μ 
and standard deviation σ. The random 
variable X∗ = (X − μ)/σ is called the 
standardized X. We have that
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Standardization is particularly useful if 
two or more random variables with 
different distributions must be 
compared. 
Suppose that, for example, a student’s 
grade in a probability test is 72 and that 
her grade in a history test is 85. 
Suppose that the mean and standard 
deviation of all grades in the history 
test are 82 and 7, respectively, while 
these quantities in the probability test 
are 68 and 4.
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If we convert the student’s grades to 
their standard deviation units, we find 
that her standard scores on the 
probability and history tests are given by 

and , 
respectively. 
These show that her grade in probability 
is 1 and in history is 0.43 standard 
deviation unit higher than their respective 
averages. 
Therefore, she is doing relatively better in 
the probability course than in the history 
course.


