
Ch11 - Part I: Sums of 
Independent Random 
Variables
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11.1 Moment-generating 
functions

Definition For a random variable X, let

MX(t) = E(etX).

MX(t) is called the 
function of X.
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If X is a discrete random variable with 
set of possible values A and probability 
mass function p(x), then

If X is a continuous random variable 
with probability density function f(x), 
then
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Theorem 11.1

Let X be a random variable with 
moment-generating function MX(t). 
Then

E(Xn) =
where MX

(n)(t) is the nth derivative of 
MX(t).
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Example 11.1
Let X be a Bernoulli random variable 
with parameter p, that is,

Determine MX(t) and E(Xn). 
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Example 11.2

Let X be a binomial random variable 
with parameters (n, p). 

Find the moment-generating function of 
X, and use it to calculate E(X) and 
Var(X).
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Example 11.2
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Example 11.3

Let X be an exponential random 
variable with parameter λ. 

Using moment-generating functions, 
calculate the mean and the variance of 
X.
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Example 11.3
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Theorem 11.2

Let X and Y be two random variables 
with moment-generating functions MX(t) 
and MY(t). If MX(t) = MY (t), then X and 
Y have the

Theorem 11.2 shows that if two random 
variables have the same moment-
generating function, then they are
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Example 11.7
Let the moment-generating function of 
a random variable X be

Since the moment-generating function 
of a discrete random variable with p.m.f

is MX(t). By theorem 11.2, the p.m.f of 
X is p(i).
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Example 11.8

Let X be a random variable with 
moment-generating function Mx(t)=e2t2. 
Find P(0<X<1).

Solution: 
 Comparing Mx(t)=e2t2 with exp[μt +(1/2) 

σ2t2], the moment-generating function of 
N(μ, σ2), we have that by the 
uniqueness of the moment-generating 
function. 
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Example 11.8

 Let Z=(X-0)/2. Then Z~ N(0,1), so



 )5.00()2/12/0()10( ZPXPXP



15

Consider a discrete random variable X for 
illustration. Let 

Partial fraction expansion

Type I

where c≠d.

Supplement: From Generating 
Function to Distribution Function
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Supplement: From Generating 
Function to Distribution Function

Partial fraction expansion

Type I

where c≠d.

Type II: in which the denominator 

factors are not distinct.

where d≠e.
16
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Assume that we are given the following 
generating function of random variable 
X

What is the probability distribution {pn} 
of X? 
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An Example
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Ans: We need to invert MX(t). First, we write 

Multiplying that by the denominator on the 
left side gives

Setting z at 2, 3, and 0 in succession, we 
find 18

An Example

18
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The partial fraction expansion of MX(t) is 
then given by 

We invert the previous equation to the time 
domain

where n=0, 1, 2, …
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An Example
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11.2 Sum of independent random 
variables

Theorem 11.3

 Let X1,X2, . . . ,Xn be independent random 
variables with moment-generating 
functions MX1(t), MX2(t), . . . , MXn(t). 

 The moment-generating function of X1 + 
X2 +· · ·+Xn is given by M X1+X2+···+Xn (t) =
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Proof:

where the next-to-last equality follows from the 
independence of X1, X2,…,Xn.
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Theorem 8.6 (see p.333)

Let X and Y be independent random 
variables. Then for all real-valued 
functions g : R → R and h: R → R ,

E[g(X)h(Y)] =

where, as usual, we assume that E[g(X)] 
and E[h(Y)] are finite.
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Theorem 8.6

Solution: Let A be the set of possible 
values of X, and B be the set of possible 
values for Y. Let p(x,y) be the joint 
probability mass function of X of Y. 
Then
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Theorem 11.4

Let X1,X2, . . . ,Xr be independent 
binomial random variables with 
parameters (n1, p), (n2, p), . . . , (nr, p), 
respectively. 

Then X1 + X2 + · · · + Xr is a binomial 
random variable with parameters



Proof: Let, as usual, q=1-p. We know 
that Mxi(t)=(pet+q)ni, i=1,2,3,…,r

 Let W=X1+X2+…+Xr; then, by Theorem 
11.3,
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Theorem 11.4

Since (pet+q)n1+n2+…+nr is the moment-
generating function of a binomial 
random variable with parameters 
(n1+n2+…+nr,p), the uniqueness 
property of moment-generating 
functions implies that W=X1+X2+…+Xr

is binomial with parameters 



2727

Theorem 11.5

Let X1,X2, . . . ,Xn be independent 
Poisson random variables with means 
λ1, λ2, . . . , λn, respectively. Then X1 + 
X2 +· · ·+Xn is a Poisson random 
variable with mean
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Theorem 11.5

Proof: Let Y be a Poisson random 
variable with mean λ. Then 

Let W=X1+X2+…+Xn; then, by Theorem 
11.3, 
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Theorem 11.5

Now, since exp[(λ1+λ2+…+λn )(e
t-1)] is 

the moment-generating function of a 
Poisson random variable with mean λ1+ 
λ2+…+λn , the uniqueness property of 
moment-generating functions implies 
that X1+X2+…+Xn is Poisson with mean
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Theorem 11.6

Let 

be independent random variables. Then

Proof: 

In Example 11.5 we showed that if X is 
normal with parameters μ and σ2, then 
Mx(t)=exp[μt+(1/2)σ2

1t
2].
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Theorem 11.6

Let W=X1+X2+…+Xn; then

This implies that
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Other similar theorems

Sums of independent geometric random 
variables are  

Sums of independent negative binomial 
random variables are

Sums of independent exponential 
random variables are

Sums of independent gamma random 
variables are
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Specifically, we can prove, by using 
moment-generating functions, that 

 if X1, X2, …, Xn are n independent gamma 
random variables with parameters (r1,λ), 
(r2,λ), …, (rn,λ), respectively, then X1 +X2+ 

… +Xn is gamma with parameters
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Example 11.10

Office fire insurance policies by a certain 
company have a $1000 deductible. 

The company has received three claims, 
independent of each other, for damages 
caused by office fire. 

If reconstruction expenses for such claims are 
exponentially distributed, each with mean 
$45,000, what is the probability that the total 
payment for these claims is less than 
$120,000?
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1. Let X be the total reconstruction expenses for the three 
claims in thousands of dollars; 

X is the sum of three independent exponential random 

variables, each with parameter $45. Therefore, it is a                   

with parameters 3 and λ = 1/45.

2. 

3. 
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