.Ch11 - Part I: Sums of
Independent Random
Variables




11.1 Moment-generating
functions

N

# Definition For a random variable X, let

M(t) = E(e¥).
M,(t) is called the

function of X.




D

#If Xis a discrete random variable with
set of possible values A and probability
mass function p(x), then

M, (1) =D e*p(x)
#If Xis a continlious random variable

with probability density function 7(x),
then

Mx(t):




Theorem 11.1

D

® [et X be a random variable with
moment-generating function M,(t).
Then

E(X") =
where M,[")(t) is the nth derivative of
M\ (t).




proof :
1.Let X be continuous with p.d.f f.

d (00 o0
M/ (t) = — e™ f xdx): xe™ f (x)dx
(= [ e T0dx )= [ xe"f(x)
d (00 o0
M?” (t) = — xe™ f (X dx): x2e™ f (x)dx
(O =[x f0gdx = x%e™f ()
M7 (t) =

where we have assumed that the derivatives of these integrals are equal to
the integrals of the derivatives of their integrands.
2.Lettingt =0, we get

M (" (0) = j_"‘; X" f (x)dx =



Example 11.1

N

" @Let Xbe a Bernoulli random variable
with parameter p, that is,

(1-p ifx=0
P(X=x)=4p if x=1
0 otherwise

Determine M,(t) and E(X").

Solution: From the definition of a moment - generating function,
M (t) = E(e™) =
Since M {" (t) = pe' forall n >0, we have that E(X") =




Example 11.2

D

#Let Xbe a binomial random variable
with parameters (n, p).

#Find the moment-generating function of
X, and use it to calculate £(X) and
Var(X).




Example 11.2

Solution:
1.The p.m.f of X, p(x), is given by

p(x)=[2jpxq“, x=012,.,n, g=1-p.

2.Hence, M, (t)=E(e")= Zn:etx[;jpxq” = Zn:@j(pet)xq“ = (pe' +q)"(Theorem?2.5)
x=0 x=0

3.To find the mean and the variance of X, note that

M/ (t) = npe' (pe' + )"

My ()=

Thus

E(X)=M;(0)=np

E(X*)=M}(0)=np+n(n-1)p’

Therefore, Var(X)=E(X?*)-[E(X)T



Example 11.3

D

#Let X'be an exponential random
variable with parameter A.

#Using moment-generating functions,

calculate the mean and the variance of
X




Example 11.3

Solution:

1.The p.d.f of Xisgiven by f(x)=4e ™™, x>0

2.M, (t)=E(e"™) =

3.Since the integral fe“‘”xdx convergesif t < A, restrictirg the domain
of M, (t) to (-0, A1), we get M, (t) = A /(1 —-1).

4-ME () = A (A= D and M (1) = @A) (A =1)?

E(X)=M;(0)=1/2

E(X*)=M%(0)=2/4

Therefore, Var(X)=E(X?*)-[E(X)] =
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Theorem 11.2

® Lelt X and Y be two random variables
with moment-generating functions M,(t)
and M(t). If M(t) = M, (t), then X and
Y have the

#®Theorem 11.2 shows that if two random
variables have the same moment-
generating function, then they are

N
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Example 11.7

N

" @Let the moment-generating function of

a random variable X be

M, (t) N
14 14 14 I

Since the moment-generating function
of a discrete random variable with p.m.f
] 1 3 3 7 Other values

pla)y | U7 377 207 17 0

is M,(t). By theorem 11.2, the p.m.f of
X is p(i).
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Example 11.8

N

#Let X be a random variable with
moment-generating function MX(t)zeZ‘Z .
Find P(0O<X<1).

®Solution:

m Comparing MX(t)zeZ‘Z with exp[ut +(1/2)
#t?], the moment-generating function of
My, 0%), we have that by the
uniqueness of the moment-generating
function.
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Example 11.8

N

m Let Z=(X0)/2. Then Z~ MO,1), so

PO<X<1)=P0<X/2<1/2)=P(0<Z<0.5)
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Supplement: From Generating
Function to Distribution Function

N

Consider a discrete random variable X for
illustration. Let

M, (t) = E[e*] = E[2"]

Partial fraction expansion

@ Type I gy

(1—c2)(1—dz)
where c#d.
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Supplement: From Generating
Function to Distribution Function

N

Partial fraction expansion

#® Type I aiil T
1-cz2)1-dz)
where c#d.

# Type II: in which the denominator
factors are not distinct.

a+bz+cz®
(1-dz)*(1-e2)

where d#e. i




An Example

N

# Assume that we are given the following
generating function of random variable
X

4

Myt = (2-2)(3-2)%

#What is the probability distribution {p,}
of X?
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N

An Example

Ans: We need to invert M,(t). First, we write
4

(22} B p)P

Multiplying that by the denominator on the
left side gives

A(B-2)°+B(2-2)(3-2)+C(2-2)=4

Setting z at 2, 3, and 0 in succession, we
find i




An Example

N
\J

The partial fraction expansion of M(t) is
then given by

x(t):

We invert the previous equation to the time

domain 2( 1y _(gjﬁ” _(ﬂj(ljn(n +1)
2 ) 3)\3 LS

where n=0, 1, 2, ...
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11.2 Sum of independent random
variables

N

#Theorem 11.3

m Let X, X%, ... X, be independent random
variables with moment-generating
functions M, (t), M\, (t), . . ., M, (T).

n 7he moment-generating function of X; +
X+t Xy s given by My xpiaxn (8) =

20




Proof:
LetW = X, + X, +...+ X, ; by definition,
MW (t) — E(etW) L E(etX1+tX2+...+tXn)

— E(etxletX2 etXn)

- E(etxl)E(etxz)...E(etX”)

where the next-to-last equality follows from the
independence of X}, X,,...,. X,
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Theorem 8.6 (see p.333)

N

® [et X and Y be independent random
variables. Then for all real-valued
functionsg: R— R and h: R— R,

E[g(X)h(Y)] =

where, as usual, we assume that E[fg(X)]
and E[h(Y)] are finite.
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Theorem 8.6

N

# Solution: Let A be the set of possible
values of X and B be the set of possible

values for Y. Let p(x,)) be the joint

probability mass function of Xof Y.
Then

E[g(X)n(Y)]=2_2> g()h(y) p(x,¥) =) > g(x)h(y) p,(x) p, () =

xeA yeB xeA yeB

=2 [90) p, ()2 h(y)p, (V)= D 9(x) p,(X)E[h(Y)]

23



Theorem 11.4

N

®Let X, X, ... X beindependent
binomial random variables with

parameters (n, p), (n, p), ..., (N, p),
respectively.

®Then X, + X, + ' * = + X is a binomial
random variable with parameters

24




Theorem 11.4

N

#®Proof: Let, as usual, g=1-p. We know
that M, (0 =(pel+q)™, i=1,2,3,...,r
n Let W=X,+X,+...+X,; then, by Theorem

11.3,

I\/IW (t) — Mxl(t)sz (t)Mxr (t)
=(pe' +9)"(pe' +q)™...(pe' +q)"
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N

Theorem 11.4

#®Since (pet+qg)i+ns+.-+mrig the moment-
generating function of a binomial
random variable with parameters

(n,+n,+...+n,p), the uniqueness
property of moment-generating
functions implies that W=X,+X,+... +X
is binomial with parameters
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Theorem 11.5

N

®Let X, X, ... X, be independent
Poisson random variables with means
A, A, ..., A, respectively. Then X, +

X, +' ' +X, Is a Poisson random
variable with mean
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Theorem 11.5

N
\J

#® Proof: Let Y be a Poisson random

variable with mean A. Then

M (t) E(etY) iety -ﬂ,y yZ(; (e j;)y

Let W=X,+X,+...+X; then, by Theorem

1 13, MW (t) =M x1(t)M xz(t)---M Xn (t)
= exp[ 4 (' ~1)]exp[4, (¢ ~1)]...exp[ 4, (" ~D)]
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Theorem 11.5

N

#Now, since exp[(A,+A,+...+A, )(e-1)] is
the moment-generating function of a
Poisson random variable with mean A,+
A,+...+A,, the uniqueness property of
moment-generating functions implies
that X,+X,+... +Xis Poisson with mean
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Theorem 11.6

N

®Let X1~N(:L’1’O-12)1X2~N(,U2’O-22) ----- X~ Ny, o
be independent random variables. Then
X+ X+ + X, ~

# Proof:

In Example 11.5 we showed that if X is
normal with parameters p and o2, then

M (H=exp[ut+(1/2) R ).
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Theorem 11.6

N

® Let W=X,+X,+...+X, then

My, (t)=M x1(t)M xz(t)---M Xn (t)

= exp(t +%012t2) exp( .t +%c722t2)...exp(,unt +%oft2)

# This implies that

X, + X, 4+ X~ Ny + fty + a4+ 1, ,0; + 6% +...+07°)
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Other similar theorems

D

#Sums of independent geometric random
variables are

#®Sums of independent negative binomial

random variables are

#Sums of independent exponential
random variables are

#Sums of independent gamma random
variables are

32




N

# Specifically, we can prove, by using
moment-generating functions, that

n if X, X, ..., X, are nindependent gamma
random variables with parameters (r;,2),
(r,,A), ..., (r,,A), respectively, then X, + X+
... + X, is gamma with parameters
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Example 11.10

N

# Office fire insurance policies by a certain
company have a $1000 deductible.

# The company has received three claims,

independent of each other, for damages
caused by office fire.

# If reconstruction expenses for such claims are
exponentially distributed, each with mean
$45,000, what is the probability that the total
payment for these claims is less than
$120,0007
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1. Let X be the total reconstruction expenses for the three
claims in thousands of dollars;
X is the sum of three independent exponential random

variables, each with parameter $45. Therefore, it is a
with parameters 3 and A = 1/45.

2.

f(x)={

3. P(X <123 =— [ x%e*dx
1822507

1
182250

(—45x° —4050x —182250e'* [(**= 0.5145
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