
CS 333202: Probability and Statistics
HW8 Part I

1. X is uniform on (0, L).
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xe−|x|dx = 0, because the integrand is an odd function.

Now
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since the integrand is an even function; applying integration by parts

to the last integral twice, we obtain E(X2) = 2.

Hence Var(X)= 2− 02 = 2.

3. Let F be the distribution function of Y . Clearly, F (y) = 0 if y ≤ 1.
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