CS 333202: Probability and Statistics HW8 Part I

1. X is uniform on $(0, L)$.
$P\left\{\min \left(\frac{X}{L-X}, \frac{L-X}{X}\right)<\frac{1}{4}\right\}$
$=1-P\left\{\min \left(\frac{X}{L-X}, \frac{L-X}{X}\right)>\frac{1}{4}\right\}$
$=1-P\left\{\frac{X}{L-X}>\frac{1}{4}, \frac{L-X}{X}>\frac{1}{4}\right\}$
$=1-P\left\{X>\frac{L}{5}, X<\frac{4 L}{5}\right\}$
$=1-P\left\{\frac{L}{5}<X<\frac{4 L}{5}\right\}$
$=1-\frac{3}{5}=\frac{2}{5}$
2. $E(X)=\int_{-\infty}^{\infty} \frac{1}{2} x e^{-|x|} d x=0$, because the integrand is an odd function.

Now

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} \frac{1}{2} x^{2} e^{-|x|} d x=\int_{0}^{\infty} x^{2} e^{-x} d x
$$

since the integrand is an even function; applying integration by parts to the last integral twice, we obtain $E\left(X^{2}\right)=2$.
Hence $\operatorname{Var}(X)=2-0^{2}=2$.
3. Let F be the distribution function of Y. Clearly, $F(y)=0$ if $y \leq 1$.

For $y>1$,

$$
F(y)=P\left(\frac{1}{X} \leq y\right)=P\left(X \geq \frac{1}{y}\right)=\frac{1-\frac{1}{y}}{1-0}=1-\frac{1}{y} .
$$

So

$$
f(y)=F^{\prime}(y)= \begin{cases}\frac{1}{y^{2}} & y>1 \\ 0 & \text { elsewhere }\end{cases}
$$

