CS 333202: Probability and Statistics

 HW7 Part II1. (a) $E[X]=\frac{1}{4} \int_{0}^{\infty} x^{2} x e^{-\frac{x}{2}} d x=2 \int_{0}^{\infty} y^{2} e^{-y} d x=2 \Gamma(3)=4$
(b) By symmetry of $f(x)$ about $x=0, E[X]=0$
(c) $E[X]=\int_{5}^{\infty} \frac{5}{x} d x=\infty$
2. Let G and g be the probability distribution and density functions of X^{2}, respectively. For $t \geq 0$,

$$
G(t)=P\left(X^{2} \leq t\right)=P(-\sqrt{t}<X<\sqrt{t})=F(\sqrt{t})-F(-\sqrt{t})
$$

Thus

$$
g(t)=G^{\prime}(t)=\frac{1}{2 \sqrt{t}} f(\sqrt{t})+\frac{1}{2 \sqrt{t}} f(-\sqrt{t})=\frac{1}{2 \sqrt{t}}[f(\sqrt{t})+f(-\sqrt{t})], t \geq 0
$$

For $t<0, g(t)=0$
3. $E\left[e^{X}\right]=\int_{0}^{\infty} e^{x}\left(3 e^{-3 x}\right) d x=\int_{0}^{\infty} 3 e^{-2 x} d x=\frac{3}{2}$

