CS 333202: Probability and Statistics HW7 Part I

1. $P(X>15)=\int_{15}^{\infty} \frac{1}{15} e^{-x / 15} d x=\frac{1}{e}$. Thus the answer is

$$
\sum_{i=4}^{8}\binom{8}{i}\left(\frac{1}{e}\right)^{i}\left(1-\frac{1}{e}\right)^{8-i}=0.3327
$$

2. (a) Since

$$
1=-\left.\lambda(100) e^{-x / 100}\right|_{0} ^{\infty}=100 \lambda \text { or } \lambda=\frac{1}{100}
$$

Hence the probability that a computer will function between 50 and 150 hours before breaking down is given by

$$
\begin{gathered}
P\{50<X<150\}=\int_{50}^{150} \frac{1}{100} e^{-x / 100} d x=-\left.e^{-x / 100}\right|_{50} ^{150} \\
=e^{-1 / 2}-e^{-3 / 2} \approx 0.384
\end{gathered}
$$

(b) Similarly,

$$
P\{X<100\}=\int_{0}^{100} \frac{1}{100} e^{-x / 100} d x=-\left.e^{-x / 100}\right|_{0} ^{100}=1-e^{-1} \approx 0.633
$$

In other words, approximately 63.3 percent of the time a computer will fail before registering 100 hours of use.
3. The way is to derive, and then differentiate, the distribution function of Y :

$$
F_{Y}(a)=P\{Y \leq a\}=P\{2 X \leq a\}=P\{X \leq a / 2\}=F_{X}(a / 2)
$$

Differentiation gives that

$$
f_{Y}(a)=\frac{1}{2} f_{X}(a / 2)
$$

