CS 333202: Probability and Statistics HW6 Part I

1. (a) Either the N th success should occur on the $(2 N-M)$ th trial or the N th failure should occur on the $(2 N-M)$ th trial. By symmetry, the answer is

$$
2 \cdot\binom{2 N-M-1}{N-1}\left(\frac{1}{2}\right)^{N}\left(\frac{1}{2}\right)^{N-M}=\binom{2 N-M-1}{N-1}\left(\frac{1}{2}\right)^{2 N-M-1}
$$

(b) The desired quantity is 2 times the probability of exactly N successes in $(2 N-1)$ trials and failures on the $(2 N)$ th and $(2 N+1)$ st trials:
$2\binom{2 N-1}{N}\left(\frac{1}{2}\right)^{N}\left(1-\frac{1}{2}\right)^{(2 N-1)-N} \cdot\left(1-\frac{1}{2}\right)^{2}=\binom{2 N-1}{N}\left(\frac{1}{2}\right)^{2 N}$
2. A total of n white balls will be withdrawn before a total of m black balls if and only if there are at least n white balls in the first $n+m-1$ withdrawals. With X equal to the number of white balls among the first $n+m-1$ withdrawn balls, then X is a hypergeometric random variable, and

$$
P\{X \geq n\}=\sum_{i=n}^{n+m-1} P\{X=i\}=\sum_{i=n}^{n+m-1} \frac{\binom{N}{i}\binom{M}{n+m-1-i}}{\binom{N+M}{n+m-1}}
$$

