CS 333202: Probability and Statistics HW4 Part I

1. Let X_{i} denote the number on the i th ball drawn, $i=1, \ldots, m$. Then $P\{X \leq k\}$
$=P\left\{X_{1} \leq k, X_{2} \leq k, \ldots, X_{m} \leq k\right\}$
$=P\left\{X_{1} \leq k\right\} P\left\{X_{2} \leq k\right\} \cdots P\left\{X_{m} \leq k\right\}$
$=\left(\frac{k}{n}\right)^{m}$
Therefore,
$P\{X=k\}=P\{X \leq k\}-P\{X \leq k-1\}=\left(\frac{k}{n}\right)^{m}-\left(\frac{k-1}{n}\right)^{m}$
2. If T is the number of tests needed for a group of 10 people, then

$$
E[T]=(0.9)^{10}+11\left[1-(0.9)^{10}\right]=11-10(0.9)^{10}
$$

3. Let N denote the number of games played.
(a) $E[N]=2\left[p^{2}+(1-p)^{2}\right]+3[2 p(1-p)]=2+2 p(1-p)$

Differentiation yields that

$$
\frac{d}{d p} E[N]=2-4 p
$$

and so the minimum occurs when $2-4 p=0$ or $p=1 / 2$
(b) $E[N]=3\left[p^{3}+(1-p)^{3}\right]+4\left[3 p^{2}(1-p) p+3 p(1-p)^{2}(1-p)\right]+$ $5\left[6 p^{2}(1-p)^{2}\right]=6 p^{4}-12 p^{3}+3 p^{2}+3 p+3$
Differentiation yields

$$
\frac{d}{d p} E[N]=24 p^{3}-36 p^{2}+6 p+3
$$

Its value at $\mathrm{p}=1 / 2$ is easily seen to be 0 .
4. (a) $\frac{1}{10}(1+2+\ldots+10)=\frac{11}{2}$
(b) After 2 questions, the are 3 remaining possibilities with probability $3 / 5$ and 2 with probability $2 / 5$. Hence,

$$
E[\text { Number }]=\frac{2}{5}(3)+\frac{3}{5}\left[2+\frac{1}{3}+2\left(\frac{2}{3}\right)\right]=\frac{17}{5} .
$$

The above assumes that when 3 remain, you choose 1 of the 3 and ask if that is the one.

