## CS 333202: Probability and Statistics HW2 Part I

1. Let $E$ be the event that a 5 occurs before a 7 ; let $F$ be the event that the first trial results in a 5 ; let $G$ be the event that the first trial results in a 7 ; and let $H$ be the event that the first trial results in neither a 5 or a 7. Conditioning on which one of these events occurs gives

$$
P(E)=P(E \mid F) P(F)+P(E \mid G) P(G)+P(E \mid H) P(H)
$$

However,

$$
\begin{gathered}
P(E \mid F)=1 \\
P(E \mid G)=0 \\
P(E \mid H)=P(E)
\end{gathered}
$$

The trials are independent; therefore, the outcome of the first trial will have no effect on subsequent rolls of dice. Since $P(F)=\frac{4}{36}, P(F)=$ $\frac{6}{36}, P(H)=\frac{26}{36}$, we see that

$$
\begin{gathered}
P(E)=\frac{1}{9}+P(E) \frac{13}{18} \\
P(E)=\frac{2}{5}
\end{gathered}
$$

2. We have

$$
P\left(A_{1} \mid A_{3} \cap A_{4}\right)=\frac{P\left(A_{1} \cap A_{3} \cap A_{4}\right)}{P\left(A_{3} \cap A_{4}\right)}=\frac{P\left(A_{1}\right) P\left(A_{3}\right) P\left(A_{4}\right)}{P\left(A_{3}\right) P\left(A_{4}\right)}=P\left(A_{1}\right)
$$

We similarly obtain $P\left(A_{2} \mid A_{3} \cap A_{4}\right)=P\left(A_{2}\right)$ and $P\left(A_{1} \cap A_{2} \mid\right.$ $\left.A_{3} \cap A_{4}\right)=P\left(A_{1} \cap A_{2}\right)$, and finally,

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2} \mid A_{3} \cap A_{4}\right) \\
& =P\left(A_{1} \mid A_{3} \cap A_{4}\right)+P\left(A_{2} \mid A_{3} \cap A_{4}\right)-P\left(A_{1} \cap A_{2} \mid A_{3} \cap A_{4}\right) \\
& =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \\
& =P\left(A_{1} \cup A_{2}\right)
\end{aligned}
$$

3. (a) 0.5
(b) $(0.8)^{3}=0.512$
(c) $(0.9)^{7} \approx 0.4783$

Rank: (b)(a)(c)

