CS 333202: Probability and Statistics HW1 Part II

1. (a) $P(A)=P(A \mid C) P(C)+P\left(A \mid C^{c}\right) P\left(C^{c}\right)>P(B \mid C) P(C)+$ $P\left(B \mid C^{c}\right) P\left(C^{c}\right)=P(B)$
(b) For the events given in the hint

$$
P(A \mid C)=\frac{P(C \mid A) P(A)}{3 / 36}=\frac{(1 / 6)(1 / 6)}{3 / 36}=1 / 3
$$

Because $1 / 6=P(A)$ is a weighted average of $P(A \mid C)$ and $P(A \mid$ C^{c}, it follows from the result $P(A \mid C)>P(A)$ that $P\left(A \mid C^{c}\right)<$ $P(A)$). Similarly,

$$
\begin{aligned}
& 1 / 3=P(B \mid C)>P(B)>P\left(B \mid C^{c}\right) \\
& \text { However, } P(A B \mid C)=0<P\left(A B \mid C^{c}\right)
\end{aligned}
$$

2. (a) Let A denote the event that the flashlight chosen will give over 100 hours of use, and let F_{j} be the event that a type j flashlight is chosen, $j=1,2,3$. To compute $P(A)$,condition on the type of the flashlight to obtain

$$
\begin{gathered}
P(A)=P\left(A \mid F_{1}\right) P\left(F_{1}\right)+P\left(A \mid F_{2}\right) P\left(F_{2}\right)+P\left(A \mid F_{3}\right) P\left(F_{3}\right)= \\
(0.7)(0.2)+(0.4)(0.3)+(0.3)(0.5)=0.41
\end{gathered}
$$

(b) The probability is obtained by using Bayes' formula:

$$
P\left(F_{j} \mid A\right)=\frac{P\left(A F_{j}\right)}{P(A)}=\frac{P\left(A \mid F_{j}\right) P\left(F_{j}\right)}{0.41}
$$

Thus,

$$
\begin{aligned}
& P\left(F_{1} \mid A\right)=(0.7)(0.2) / 0.41=14 / 41 \\
& P\left(F_{1} \mid A\right)=(0.4)(0.3) / 0.41=12 / 41 \\
& P\left(F_{1} \mid A\right)=(0.3)(0.5) / 0.41=15 / 41
\end{aligned}
$$

3. Let $M, T, W, T h, F$ be the events that the mail is received on that day.

Also, let A be the event that she is accepted and R that she is rejected.
(a) $P(M)=P(M \mid A) P(A)+P(M \mid R) P(R)$ $=(0.15)(0.6)+(0.05)(0.4)=0.11$
(b) $P\left(T \mid M^{c}\right)=\frac{P(T)}{P\left(M^{c}\right)}=\frac{P(T \mid A) P(A)+P(T \mid R) P(R)}{1-P(M)}=\frac{(0.2)(0.6)+(0.1)(0.4)}{0.89}=$ $\frac{16}{89}$
(c) $P\left(A \mid M^{c} T^{c} W^{c}\right)=\frac{P\left(M^{c} T^{c} W^{c} \mid A\right) P(A)}{P\left(M^{c} T^{c} W^{c}\right)}$

$$
=\frac{(1-0.15-0.20-0.25)(0.6)}{(0.4)(0.6)+(0.75)(0.4)}=\frac{12}{27}
$$

