CS 333202: Probability and Statistics HW1

- 1. Let E, F, and G be three events. Find expressions for the events so that of E, F, and G:
 - (a) both E and G but not F occur;
 - (b) at least one of the events occurs;
 - (c) all three occur;
 - (d) at most one of them occurs;
 - (e) exactly two of them occur;

Hint: For example, the expression of the event that only E occurs is $E(F \cup G)^c$.

2. A certain town of population size 100,000 has 3 newspapers: A, B, and C. The proportions of townspeople who read these papers are as follows:

A: 10%	A and B: 8%	A and B and C: 1%
B: 30%	A and C: 2%	
C: 5%	B and C: 4%	

(The list tells us, for instance, that 8,000 people read newspapers A and B.)

- (a) Find the number of people who read only one newspaper.
- (b) How many people read at least two newspapers?
- (c) How many people do not read any newspapers?

- 3. Which of the following statements is true? If a statement is true, prove it. If it is false give a counterexample.
 - (a) If P(A)+P(B)+P(C)=1, then the events A, B, and C are mutually exclusive.
 - (b) IP $P(A \cup B \cup C)=1$, then A, B, and C are mutually exclusive events.
- 4. Let $\{A_1, A_2, ...\}$ be a sequence of events. Prove that if the series $\sum_{n=1}^{\infty} P(A_n)$ converges, then $P(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n) = 0$. This is called **Borel-Cantelli lemma.** It says that if $\sum_{m=1}^{\infty} P(A_n) < \infty$, the probability that infinitely many of the A_n 's occur is 0. HINT: Let $B_m = \bigcup_{n=m}^{\infty} A_n$ and apply Theorem 1.8 to $\{B_m, m \ge 1\}$
- 5. A point is selected at random from the interval (0,2000). What is the probability that it is an integer?