CS 333202: Probability and Statistics HW13 Part II

1. Cards from an ordinary deck of 52 playing cards are turned face up one at a time. If the first card is an ace, or the second a deuce, or the third a three, or, or the thirteenth a king, or the fourteenth an ace, and so on, we say that a match occurs. Note that we do not require that the $(13 n+1)$ th card be cany particular ace for a match to occur but only that it be an ace. Compute the expected number of matches that occurs.
2. Consider n independent flips of a coin having probability p of landing heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if $n=5$ and the outcome is H H T H T, then there is a total of 3 changeovers. Find the expected number of changeovers. Hint: Express the number of changeovers as the sum of $n-1$ Bernoulli random variables.
3. A certain region is inhabited by r distinct types of a certain kind of insect species, and each insect caught will, independently of the types of the previous catches, be of type i with probability

$$
P_{i}, i=1,2, \ldots, r \quad \sum_{1}^{r} P_{i}=1
$$

(a) Compute the mean number of insects that are caught before the first type 1 catch.
(b) Compute the mean number of types of insects that are caught before the first type 1 catch.
4. The positive random variable X is said to be a lognormal random variable with parameters μ and σ^{2} if $\log (X)$ is a normal random variable
with mean μ and variance σ^{2}. Use the normal moment generating function to find the mean and variance of a lognormal random variable. Hint: Let $Y=\log (X)$
Since Y is normal random variable, we can use the normal moment generating function $M_{Y}(t)$ to find the mean and variance of a lognormal random varible X.

$$
M_{Y}(t)=E\left[e^{t Y}\right]
$$

Attention: Use the normal moment generating function rather than use the lognormal moment generating function.
5. Let $M_{X}(t)=1 /(1-t), t<1$ be the moment-generating function of a random variable X. Find the moment-generating function of the random variable $Y=2 X+1$.
6. For a random variable X , its moment-generating function is $M_{X}(t)=$ $(1 / 81)\left(e^{t}+2\right)^{4}$. Find $P(X \leq 2)$.

