CS 333202: Probability and Statistics HW13 Part I

1. For $i=1,2, \ldots, n$, let

$$
X_{i}= \begin{cases}1 & \text { if the } i \text { th letter is addressed correctly } \\ 0 & \text { otherwise }\end{cases}
$$

Clearly,

$$
E\left(X_{i}\right)=1 \cdot \frac{1}{n}+0 \cdot\left(1-\frac{1}{n}\right)=\frac{1}{n}
$$

Thus, $E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=n \cdot \frac{1}{n}=1$ is the desired quantity.
2. Let E_{1} be the event that the first three outcomes are heads and the fourth outcome is tails. For $2 \leq i \leq n-3$, let E_{i} be as defined in the hint. Let E_{n-2} be the event that the outcome $(n-3)$ is tails and the last three outcomes are heads. The expected number of exactly three consecutive heads is

$$
\begin{aligned}
& E\left(X_{1}+\sum_{i=2}^{n-3} X_{i}+X_{n-2}\right) \\
& =E\left(X_{1}\right)+\sum_{i=2}^{n-3} E\left(X_{i}\right)+E\left(X_{n-2}\right) \\
& =P\left(E_{1}\right)+\sum_{i=2}^{n-3} P\left(E_{i}\right)+P\left(E_{n-2}\right) \\
& =\left(\frac{1}{2}\right)^{4}+\sum_{i=2}^{n-3}\left(\frac{1}{2}\right)^{5}+\left(\frac{1}{2}\right)^{4} \\
& =\left(\frac{1}{2}\right)^{3}+(n-4)\left(\frac{1}{2}\right)^{5} \\
& =\frac{n}{32} .
\end{aligned}
$$

3. $R(1)$, the number of runs of 1 , can be expressed as

$$
R(1)=\sum_{i=1}^{n+m} I_{i}
$$

and thus

$$
E[R(1)]=\sum_{i=1}^{n+m} E\left[I_{i}\right]
$$

Now,

$$
E\left[I_{1}\right]=P(\text { " } 1 \text { " in position } 1)=\frac{n}{n+m}
$$

and for $1<i \leq n+m$,

$$
E\left[I_{i}\right]=P(\text { " } 0 \text { " in position } i-1 \text {, " } 1 \text { "" in position } i)=\frac{m}{n+m} \frac{n}{n+m-1}
$$

Hence

$$
E[R(1)]=\frac{n}{n+m}+(n+m-1) \frac{n m}{(n+m)(n+m-1)}
$$

Similarly, $E[R(0)]$, the expected number of runs of 0 's, is

$$
E[R(0)]=\frac{m}{n+m}+\frac{n m}{n+m}
$$

and the expected number of runs of either type is

$$
E[R(1)+R(0)]=1+\frac{2 n m}{n+m}
$$

