CS 333202: Probability and Statistics HW12 Part III

1. Since $X+Y+Z$ is Poisson with parameter $\lambda_{1}+\lambda_{2}+\lambda_{3}$, and $X+Z$ is Poisson with parameter $\lambda_{1}+\lambda_{3}$, we have that
$P(Y=y \mid X+Y+Z=t)$
$=\frac{P(Y=y, X+Z=t-y)}{P(X+Y+Z=t)}$
$=\frac{\frac{e^{-\lambda_{2}} \lambda_{2}^{y}}{\frac{y}{2} \cdot e^{-\left(\lambda_{1}+\lambda_{3}\right)}\left(\lambda_{1}+\lambda_{3}\right)^{t-y}}}{\frac{e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}\left(t \lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{t}}{t!}}$
$=\binom{t}{y}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right)^{y}\left(\frac{\lambda_{1}+\lambda_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right)^{t-y}$
2. Let X be the remaining calling time of the person in the booth. Let Y be the calling time of the person ahead of Mr. Watkins. By the memoryless property of exponential, X is exponential with parameter $1 / 8$. Since Y is also exponential with parameter $1 / 8$, assuming that X and Y are independent, the waiting time of Mr . Watkins, $X+Y$, is gamma with parameters 2 and $1 / 8$. Therefore,

$$
P(X+Y \geq 12)=\int_{12}^{\infty} \frac{1}{64} x e^{-x / 8} d x=\frac{5}{2} e^{-3 / 2}=0.558
$$

3. Let \bar{X} be the average of the weights of the 12 randomly selected athletes. Let $X_{1}, X_{2}, \ldots, X_{12}$ be the weights of these athletes. Since

$$
\bar{X} \sim N\left(225, \frac{25^{2}}{12}\right)=N\left(225, \frac{625}{12}\right)
$$

we have that
$P\left(X_{1}+X_{2}+\cdots+X_{12} \leq 2700\right)=P\left(\bar{X} \leq \frac{2700}{12}\right)=P(\bar{X} \leq 225)=$ $P\left(\frac{\bar{X}-225}{\sqrt{625 / 12}} \leq \frac{225-225}{\sqrt{625 / 12}}\right)=\Phi(0)=\frac{1}{2}$

