CS 333202: Probability and Statistics HW12 Part II

1. $M_{X}(t)=E\left(e^{t X}\right)=\sum_{x=1}^{5} e^{t x} p(x)=\frac{1}{5}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}\right)$.
2. (a) By definition,

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t X}\right)=\sum_{x=0}^{\infty} e^{t x} \frac{e^{-\lambda} \lambda^{x}}{x!}=e^{\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!}=e^{-\lambda} e^{\lambda e^{t}}= \\
& e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

(b) From

$$
M_{X}^{\prime}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}
$$

and

$$
M_{X}^{\prime \prime}(t)=\left(\lambda e^{t}\right)^{2} e^{\lambda\left(e^{t}-1\right)}+\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}
$$

we obtain $E(X)=M_{X}^{\prime}(0)=\lambda$ and $E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=\lambda^{2}+\lambda$. Therefore,

$$
\operatorname{Var}(X)=\left(\lambda^{2}+\lambda\right)-\lambda^{2}=\lambda
$$

(c) We see from (a) that $M(t)=e^{3\left(e^{t}-1\right)}$ is the moment generating function of a Poisson random variable with mean 3. Hence, by the one-to-one correspondence between moment generating functions and distribution functions, it follows that X must be a Poisson random variable with mean 3 . Thus $P(X=0)=e^{-3}$.
3. Note that

$$
M_{X}(t)=E\left(e^{t X}\right)=\sum_{x=1}^{\infty} e^{t x} \cdot 2\left(\frac{1}{3}\right)^{x}=2 \sum_{x=1}^{\infty} e^{t x} \cdot e^{-x \ln 3}=2 \sum_{x=1}^{\infty} e^{x(t-\ln 3)}
$$

Restricting the domain of $M_{X}(t)$ to the set $\{t: t<\ln 3\}$ and using the geometric series theorem, we get

$$
M_{X}(t)=2\left(\frac{e^{t-\ln 3}}{1-e^{t-\ln 3}}\right)=\frac{2 e^{t}}{3-e^{t}}
$$

(Note that $e^{-\ln 3}$.) Differentiating $M_{X}(t)$, we obtain

$$
M_{X}^{\prime}(t)=\frac{6 e^{t}}{\left(3-e^{t}\right)^{2}},
$$

which gives $E(X)=M_{X}^{\prime}(0)=3 / 2$.

