CS 333202: Probability and Statistics HW12 Part II

1. Let X be a discrete random variable with probability mass function $p(i)=1 / 5, i=1,2, \ldots, 5$, zero elsewhere. Find $M_{X}(t)$.
2. (a) Find $M_{X}(t)$, the moment-generating function of a Poisson random variable X with parameter λ.
Hint: $\sum_{x=0}^{\infty} \frac{a^{x}}{x!}=e^{a}$
(b) Use $M_{X}(t)$ to find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(c) Suppose that the moment generating function of a random variable X is given by $M(t)=e^{3\left(e^{t}-1\right)}$. What is $P(X=0)$?
3. Let X be a discrete random variable with the probability mass function

$$
p(i)=2\left(\frac{1}{3}\right)^{i}, \quad i=1,2,3, \ldots ; \quad \text { zero elsewhere. }
$$

Find $M_{X}(t)$ and $E(X)$.
Hint: Note that the condition that $M_{X}(t)$ be finite in some interval is an important requirement. Without this condition some moments of X may not exist.

