
CS 333202: Probability and Statistics
HW12 Part I

1. Let p(x, y) be the joint probability mass function of X and Y . Clearly,
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Using these, we have that
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Remark: In successive draws of cards from an ordinary deck of 52

cards, one at a time, randomly, and with replacement, the expected

value of the number of draws until the first ace is 1/(1/13) = 13. This

exercise shows that knowing the first king occurred on the fifth trial

will increase, on the average, the number of trials until the first ace

0.412 draws.

2. Let Y be the total number of heads obtained. Let X be the total num-

ber of heads in the first 10 flips. For 2 ≤ x ≤ 10,
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This is the probability mass function of a hypergeometric random vari-

able with parameters N = 20, D = 10, and n = 12. Its expected value

is nD
N

= 12×10
20

= 6, as expected.

3. The problem is equivalent to the following: Two points X and Y are

selected independently and at random from the interval (0, `). What

is the probability that the length of at least one interval is less than

`/20? The solution to this problem is as follows:
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Therefore, the desired probability is 1− 0.7225 = 0.2775
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