CS 333202: Probability and Statistics
HW12 Part I

. Let p(z,y) be the joint probability mass function of X and Y . Clearly,

and

Using these, we have that
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Remark: In successive draws of cards from an ordinary deck of 52
cards, one at a time, randomly, and with replacement, the expected
value of the number of draws until the first ace is 1/(1/13) = 13. This
exercise shows that knowing the first king occurred on the fifth trial
will increase, on the average, the number of trials until the first ace

0.412 draws.

. Let Y be the total number of heads obtained. Let X be the total num-
ber of heads in the first 10 flips. For 2 < x < 10,
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This is the probability mass function of a hypergeometric random vari-

able with parameters N = 20, D = 10, and n = 12. Its expected value

..nD _ 12x10 _
is 57 = 55— = 06, as expected.

. The problem is equivalent to the following: Two points X and Y are
selected independently and at random from the interval (0,¢). What
is the probability that the length of at least one interval is less than
¢/20?7 The solution to this problem is as follows:

Pmin(X,Y - X, (-Y) < £ | X <Y)P(X <Y)+ P(min(¥, X —
YV {-X)< 5| X>Y)P(X>Y)
=2Pmin(X,Y - X, (-Y) < &£ | X <Y)P(X <Y)
=2Pmin(X,Y - X, (-Y)< 5| X <Y)-1
=1—-Pmin(X,Y - X, (-Y)> 5| X <Y)
=1-PX>L Y-X>L (-Y>L 51 X <Y)
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=1-P(X>4,Y - X>2€0,Y<194|X<Y)
Now P(X > £,V =X > LV < 9| X <) is the area of the

region
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divided by the area of the triangle
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that is,
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wrm s 8= ().7225
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Therefore, the desired probability is 1 — 0.7225 = 0.2775



