CS 333202: Probability and Statistics HW12 Part I

1. Let $p(x, y)$ be the joint probability mass function of X and Y. Clearly,

$$
p_{Y}(5)=\left(\frac{12}{13}\right)^{4}\left(\frac{1}{13}\right)
$$

and

$$
p(x, 5)= \begin{cases}\left(\frac{11}{13}\right)^{x-1}\left(\frac{1}{13}\right)\left(\frac{12}{13}\right)^{4-x}\left(\frac{1}{13}\right) & x<5 \\ 0 & x=5 \\ \left(\frac{11}{13}\right)^{4}\left(\frac{1}{13}\right)\left(\frac{12}{13}\right)^{x-6}\left(\frac{1}{13}\right) & x>5\end{cases}
$$

Using these, we have that

$$
\begin{aligned}
& E(X \mid Y=5)=\sum_{x=1}^{\infty} x p_{X \mid Y}(x \mid 5)=\sum_{x=1}^{\infty} x \frac{p(x, 5)}{p_{Y}(5)} \\
& =\sum_{x=1}^{4} \frac{1}{11} x\left(\frac{11}{12}\right)^{x}+\sum_{x=6}^{\infty} x\left(\frac{11}{12}\right)^{4}\left(\frac{1}{13}\right)\left(\frac{12}{13}\right)^{x-6} \\
& =0.72932+\left(\frac{11}{12}\right)^{4}\left(\frac{1}{13}\right) \sum_{y=0}^{\infty}(y+6)\left(\frac{12}{13}\right)^{y} \\
& =0.72932+\left(\frac{11}{12}\right)^{1}\left(\frac{1}{13}\right)\left[\sum_{y=0}^{\infty} y\left(\frac{12}{13}\right)^{y}+6 \sum_{y=0}^{\infty}\left(\frac{12}{13}\right)^{y}\right] \\
& =0.72932+\left(\frac{11}{12}\right)^{1}\left(\frac{1}{13}\right)\left[\frac{12 / 13}{(1 / 13)^{2}}+6 \frac{1}{1-(12 / 13)}\right]=13.412 .
\end{aligned}
$$

Remark: In successive draws of cards from an ordinary deck of 52 cards, one at a time, randomly, and with replacement, the expected value of the number of draws until the first ace is $1 /(1 / 13)=13$. This exercise shows that knowing the first king occurred on the fifth trial will increase, on the average, the number of trials until the first ace 0.412 draws.
2. Let Y be the total number of heads obtained. Let X be the total number of heads in the first 10 flips. For $2 \leq x \leq 10$,

$$
p_{X \mid Y}(x \mid 12)=\frac{p(x, 12)}{p_{Y}(12)}=\frac{\left.\binom{10}{x}\left(\frac{1}{2}\right)^{10} \cdot\binom{10}{12-x}\right)^{\left(\frac{1}{2}\right)^{10}}}{\binom{20}{12}}=\frac{\left(\frac{1}{2}\right)^{20}}{\binom{10}{x} \cdot\binom{10}{12-x}}
$$

This is the probability mass function of a hypergeometric random variable with parameters $N=20, D=10$, and $n=12$. Its expected value is $\frac{n D}{N}=\frac{12 \times 10}{20}=6$, as expected.
3. The problem is equivalent to the following: Two points X and Y are selected independently and at random from the interval $(0, \ell)$. What is the probability that the length of at least one interval is less than $\ell / 20$? The solution to this problem is as follows:

$$
\begin{aligned}
& P\left(\left.\min (X, Y-X, \ell-Y)<\frac{\ell}{20} \right\rvert\, X<Y\right) P(X<Y)+P(\min (Y, X- \\
& \left.Y, \ell-X) \left.<\frac{\ell}{20} \right\rvert\, X>Y\right) P(X>Y) \\
& =2 P\left(\left.\min (X, Y-X, \ell-Y)<\frac{\ell}{20} \right\rvert\, X<Y\right) P(X<Y) \\
& =2 P\left(\left.\min (X, Y-X, \ell-Y)<\frac{\ell}{20} \right\rvert\, X<Y\right) \cdot \frac{1}{2} \\
& =1-P\left(\left.\min (X, Y-X, \ell-Y) \geq \frac{\ell}{20} \right\rvert\, X<Y\right) \\
& =1-P\left(X \geq \frac{\ell}{20}, Y-X \geq \frac{\ell}{20}, \left.\ell-Y \geq \frac{\ell}{20} \right\rvert\, X<Y\right) \\
& =1-P\left(X \geq \frac{\ell}{20}, Y-X \geq \frac{\ell}{20}, \left.Y \leq \frac{19 \ell}{20} \right\rvert\, X<Y\right) . \\
& \text { Now } P\left(X \geq \frac{\ell}{20}, Y-X \geq \frac{\ell}{20}, \left.Y \leq \frac{19 \ell}{20} \right\rvert\, X<Y\right) \text { is the area of the } \\
& \text { region }
\end{aligned}
$$

$$
\left\{(x, y) \in \mathbf{R}^{2}: 0<x<\ell, 0<y<\ell, x \geq \frac{\ell}{20}, y-x \geq \frac{\ell}{20}, y \leq \frac{19 \ell}{20}\right\}
$$

divided by the area of the triangle

$$
\left\{(x, y) \in \mathbf{R}^{2}: 0<x<\ell, 0<y<\ell, y>x\right\}
$$

that is,

$$
\frac{\frac{177}{20} \times \frac{17 \ell}{20}}{2} \div \frac{\ell^{2}}{2}=0.7225 .
$$

Therefore, the desired probability is $1-0.7225=0.2775$

