CS 333202: Probability and Statistics HW11 Part I

1. If we let X and Y denote, respectively, the time past 12 that the man and the woman arrive, then X and Y are independent random variable, each of which is uniformly distributed over $(0,60)$. The desired probability, $P(X+10<Y)+P(Y+10<X)$, which by symmetry equals $2 P(X+10<Y)$, is obtained as follows:

$$
\begin{aligned}
& 2 P(X+10<Y) \\
& =2 \iint_{x+10<y} f(x, y) d x d y \\
& =2 \iint_{x+10<y} f_{X}(x) f_{Y}(y) d x d y \\
& =2 \int_{10}^{60} \int_{0}^{y-10}\left(\frac{1}{60}\right)^{2} d x d y \\
& =\left(\frac{2}{60}\right)^{2} \int_{10}^{60}(y-10) d y \\
& =\frac{25}{36}
\end{aligned}
$$

2. Since

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) f_{Y}(y) f_{Z}(z) \quad 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1
$$

we have

$$
\begin{aligned}
& P(X \geq Y Z) \\
& =\iiint_{x \geq y z} f_{X, Y, Z}(x, y, z) d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1} \int_{y z}^{1} d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1}(1-y z) d y d z \\
& =\int_{0}^{1}\left(1-\frac{z}{2}\right) d z \\
& =\frac{3}{4}
\end{aligned}
$$

3. Let G and g be the probability distribution and probability density functions of $\max (X, Y) / \min (X, Y)$. Then $G(t)=0$ if $t<1$. For $t \leq 1$, $G(t)$

$$
\begin{aligned}
& =P\left(\frac{\max (X, Y)}{\min (X, Y)} \leq t\right) \\
& =P(\max (X, Y) \leq t \min (X, Y)) \\
& =P(X \leq t \min (X, Y), Y \leq t \min (X, Y)) \\
& \left.=P\left(\min (X, Y) \geq \frac{X}{t}, \min (X, Y) \geq \frac{Y}{t}\right)\right) \\
& =P\left(X \geq \frac{X}{t}, Y \geq \frac{X}{t}, X \geq \frac{Y}{t}, Y \geq \frac{Y}{t}\right)=P\left(Y \geq \frac{X}{t}, X \geq \frac{Y}{t}\right) \\
& =P\left(\frac{X}{t} \leq Y \leq t X\right) .
\end{aligned}
$$

This quantity is the area of the region

$$
\left\{(x, y): 0<x<1,0<y<1, \frac{x}{t} \leq y \leq t x\right\}
$$

which is equal to $(t-1) / t$. Hence

$$
G(t)= \begin{cases}0 & t<1 \\ \frac{t-1}{t} & t \geq 1\end{cases}
$$

and therefore,

$$
g(t)=G^{\prime}(t)= \begin{cases}\frac{1}{t^{2}} & t \geq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

