CS 333202: Probability and Statistics HW10 Part II

1. (a) $P(X>1, Y<1)=\int_{0}^{1} \int_{1}^{\infty} 2 e^{-x} e^{-2 y} d x d y$

$$
\begin{aligned}
& =\int_{0}^{1} 2 e^{-2 y}\left(-\left.e^{-x}\right|_{1} ^{\infty}\right) d y \\
& =e^{-1} \int_{0}^{1} 2 e^{-2 y} d y \\
& =e^{-1}\left(1-e^{-2}\right)
\end{aligned}
$$

(b) $P(X<Y)=\iint_{(x, y): x<y} 2 e^{-x} e^{-2 y} d x d y$
$=\int_{0}^{\infty} \int_{0}^{y} 2 e^{-x} e^{-2 y} d x d y$
$=\int_{0}^{\infty} 2 e^{-2 y}\left(1-e^{-y}\right) d y$
$=\int_{0}^{\infty} 2 e^{-2 y} d y-\int_{0}^{\infty} 2 e^{-3 y}$
$=1-\frac{2}{3}$
$=\frac{1}{3}$
(c) $P(X<a)=\int_{0}^{a} \int_{0}^{\infty} 2 e^{-2 y} e^{-x} d y d x$
$=\int_{0}^{a} e^{-x} d x$
$=1-e^{-a}$
2. We start by computing the distribution function of X / Y. For $a>0$

$$
\begin{aligned}
& F_{X / Y}(a)=P\left(\frac{X}{Y} \leq a\right) \\
& =\iint_{x / y \leq a} e^{-(x+y)} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{a y} e^{-(x+y)} d x d y \\
& =\int_{0}^{\infty}\left(1-e^{-a y}\right) e^{-y} d y \\
& =\left.\left\{-e^{-y}+\frac{e^{-(a+1) y}}{a+1}\right\}\right|_{0} ^{\infty} \\
& =1-\frac{1}{a+1}
\end{aligned}
$$

Differentiation yields that the density function of X / Y is given by $f_{X / Y}(a)=1 /(a+1)^{2}, 0<a<\infty$
3. Let X and Y be the minutes past 11:30 A.M. that the man and his fiancée arrive at the lobby, respectively. We have that X and Y are
uniformly distributed over $(0,30)$. Let $S=\{(x, y): 0 \leq x \leq 30,0 \leq$ $y \leq 30\}$ and $R=\{(x, y) \in S: y \leq x-12$ or $y \geq x+12\}$. The desired probability is the area of R divided by the area of $S: 324 / 900=0.36$. (Draw a figure.)
4. The problem is equivalent to the following: Two random numbers X and Y are selected at random and independently from $(0, \ell)$. What is the probability that $|X-Y|<X$? Let
$S=\{(x, y): 0<x<\ell, 0<y<\ell\}$
$R=\{(x, y) \in S:|x-y|<x\}=\{(x, y) \in S: y<2 x\}$.
The desired probability is the area of R which is $3 \ell^{2} / 4$ divided by ℓ^{2}. So the answer is $3 / 4$. (Draw a figure.)

