Project 1 RTP Project

PCS 2013

TA: Cheng-Ting Chang

Email: qqting@wmnet.cs.nthu.edu.tw

Introduction

- * RTP: A Transport Protocol for Real-Time Application
 - * RTP : Real-time Transport Protocol
 - * First published in 1996 as RFC 1889, superseded by RFC 3550 in 2003.
- * RTP over UDP
 - * A sequence number
 - * A time stamp for synchronized play-out

Project

* Goal

- * Realize how to send voice packet over RTP.
- * Recognize the format of RTP.
- * Learn how to use Wireshark.

* Task

- * Trace "PCS_RTP_Project"
- * Modify code
- * Use Wireshark to capture RTP/RTCP packets

- 1) Check your PC meets the following conditions:
 - ✓ Equipped with a speaker or headphone (喇叭或耳機)
 - Equipped with a microphone
 - ✓ Has network connection
- 2) Download PCS_RTP_Project.zip
 - * If your PC has no Java development environment, you have to download and install JDK and Eclipse.

- 3) Create a new project
 - a. Use Eclipse to establish a new Java project

- 3) Create a new project
 - b. Enter the project name, and click "Finish".

- 3) Create a new project
 - c. Find the project location, put the following source

codes into "src" directory:

- ✓ The whole jlibrtp directory
- ✓ PCS_RTP_Callee.java
- ✓ PCS RTP Caller.java
- ✓ PCS_UI.java

default location is:

C:\Users\NAME\workspace\PCS_RTP_Project\src

8

- 3) Create a new project
 - d. Refresh your project.

- 4) Execute this project
 - a. Before you modify the codes, this project can be built and executed successfully.

Run Java Application (1/2)

Run Java Application (2/2)

* This program is successfully built if the following window appears.

- 5) Choose one of the following way to test this project
 - a. Use 2 different PCs to build and run the program, one of them runs the caller, and another runs the callee.
 - b. You can export your project into a runnable JAR file, and put this JAR file in another PC to run. (Note: The another PC must have Java Runtime Environment, JRE)
 - c. Run both caller and callee in the same PC.

Two Different PCs to test

Export Java Application (1/2)

Export Java Application (2/2)

Caller and Callee in one PC

- 6) Test this project
 - a. Assign appropriate IP and RTP/RTCP port to the running program.
 - b. Click the "Dial" button of the caller and the "Answer" button of the callee
 - c. Before you modify the codes, the callee should hear the voice from the caller. (but Caller can't hear Callee)

7) Complete this project

a. Trace PCS_RTP_Caller.java and PCS_RTP_Callee.java, and then modify the codes to make Caller and Callee can talk to each other.

b. Hints:

- Trace main function first, and then trace the functions used in the main function.
- ✓ Trace codes in PCS_RTP_Caller.java for recording voice and PCS_RTP_Callee.java for playing voice.

- 8) Use Wireshark to analyze RTP and RTCP packets
 - a. Download and install Wireshark.
 - b. Capture the UDP packets whose address includes the remote PC. (ip.addr == REMOTE_IP_ADDRESS)
 - c. Decode the UDP packets on port 5004 as RTP.
 - d. Decode the UDP packets on port 5005 as RTCP.

Note:

- a. ip.addr can't be 127.0.0.1 because Wireshark can't capture the packets from this address.
- b. 5004 and 5005 are determined by your input of program.

Wireshark – Getting Started

Wireshark - Capture Device

Wireshark – Decode RTP/RTCP

Wireshark - Decode RTP


```
Destination
                 Source
                                     140.114.71.139
   624 26.5451070 140.114.71.200
                                     140.114.71.139
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14735, Time=2171651085
   625 26,5461040 140,114,71,200
                                     140.114.71.139
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14736, Time=2171651086
                                                         RTP
   626 26.5470960 140.114.71.200
                                     140.114.71.139
                                                         RTP
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14737, Time=2171651086
   627 26.5471010 140.114.71.200
                                     140.114.71.139
                                                         RTP
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14738, Time=2171651087
   628 26.5480950 140.114.71.200
                                     140.114.71.139
                                                         RTP
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14739, Time=2171651088
                                     140.114.71.139
                                                         RTP
                                                                                  1078 PT=ITU-T G.711 PCMU, SSRC=0x23068FB8, Seq=14740, Time=2171651089
   629 26.5491010 140.114.71.200
   635 26,6747260 140,114,71,200
                                     140.114.71.139
                                                                                  1078 PT=ITU-T G.711 PCMU. SSRC=0x23068FB8. Sea=14741. Time=2171651215
                                                         RTP
   636 26 6755000 140 114 71 200
                                     140 114 71 130
                                                                                  1078 DT-TTH-T & 711 DCMH
⊞ Frame 623: 1078 bytes on wire (8624 bits), 1078 bytes captured (8624 bits) on interface 0

⊕ Ethernet II, Src: Giga-Byt_55:ec:10 (50:e5:49:55:ec:10), Dst: Giga-Byt_55:ec:22 (50:e5:49:55:ec:22)

                                      +0.11+./1.200 (1+0.11+./1.200), Dst: 140.114.71.139 (140.114.71.139)
 User Datagram Protocol, Src Port: avt-profile-1 (5004), Dst Port: avt-profile-1 (5004)
  Real-Time Transport Protocol
    10.. .... = Version: RFC 1889 Version (2)
    ..0. .... = Padding: False
    ...0 .... = Extension: False
    .... 0000 = Contributing source identifiers count: 0
    0... = Marker: False
    Payload type: ITU-T G.711 PCMU (0)
    Sequence number: 14734
    Timestamp: 2171651078
    Synchronization Source identifier: 0x23068fb8 (587632568)
    Payload: 26ff2fff23ff33ff57ff49ff37ff54ff37ff27ff44ff26ff...
```

Wireshark – Decode RTCP

Requirement

- * Caller and Callee can talk to each other (50%)
- * Report requirements (3 ~ 5 pages) (50%)
 - * Screenshots for program running windows of Caller and Callee.
 - * Screenshots for RTP and RTCP packets format in Wireshark.
 - Explain the process of program execution.
 - * Your thoughts after this project.
 - * Possible extensions.

Turn In

- * iLMS
 - * http://lms.nthu.edu.tw/
- * Wrap the following files into 學號_姓名.zip
 - * Report
 - * PCS_RTP_Caller.java and PCS_RTP_Callee.java
- * Due Date
 - * 2013/04/03 23:59:59

補充說明 (1/2)

- * 如何檢查播放裝置與錄音裝置是否正常?(參考下頁圖)
 - 1. 開啟播放/錄音裝置。
 - 2. 放個音樂檢查正在使用的播放裝置是否有音量起伏。
 - 確認麥克風已開啟,對麥克風說話檢查錄音裝置是否有音量起伏。
 - 4. 若修改程式前Callee聽不到Caller講話,可能是程式抓到的裝置並非您正在使用的裝置,請將其餘非使用中的裝置停用後,重開Caller與Callee再行測試。

補充說明 (2/2)

Right click

Thank you!

qqting@wmnet.cs.nthu.edu.tw